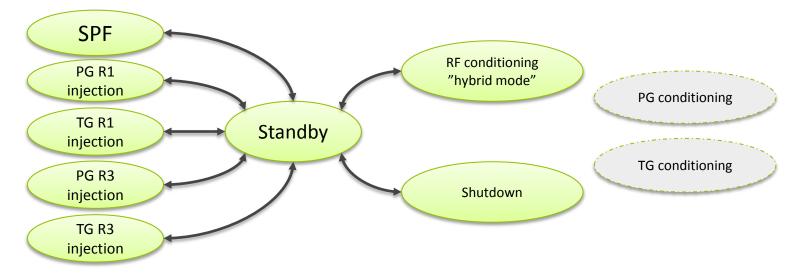


Design considerations for automatic operation

Magnus Sjöström, 2015-12-03



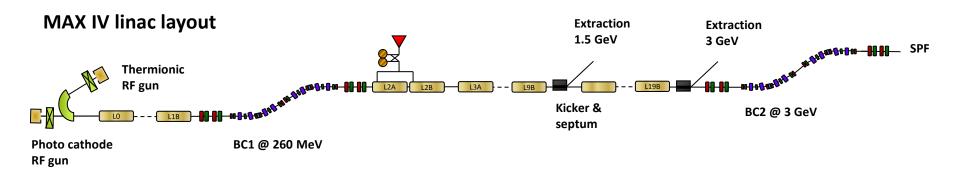
Outline

- States and state transitions
 - Linac
 - States
 - Feedbacks
 - Current automation
 - R3/R1
 - States
 - Feedbacks
 - Current automation
 - MPS and PSS
 - Snapshot system

Linac states, features

Standby: Mode with blocked/disabled beam, to allow machine changes in a safe way from PSS perspective.

Injection: Feedbacks active, non-compressed bunches, 10 Hz rep-rate, thermionic gun active. **SPF:** 100 Hz rep-rate, compressed bunches, feedbacks active, photo-cathode gun.

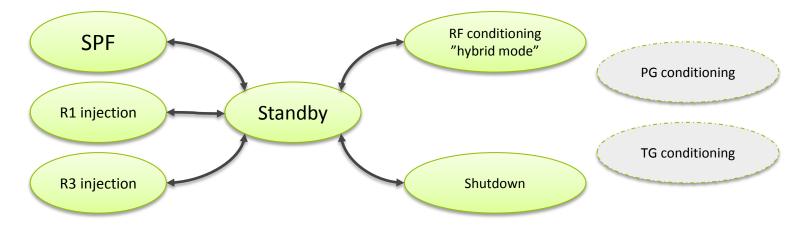

"Hybrid mode" conditioning: No beam, 100 Hz to condition the SLEDs/RF structures, no RF to guns and L00.

Gun conditioning states: automation not foreseen

Shutdown: Well defined when going from standby. Maintenance and other activities then "ruins" it. Diagnostic routines and tests needed to get back to it.

Linac states, feedbacks

Trajectory feedback:


- Position and angle stability critical for SPF, injection.
- Sextupole magnets in bunch compressors require good position stability

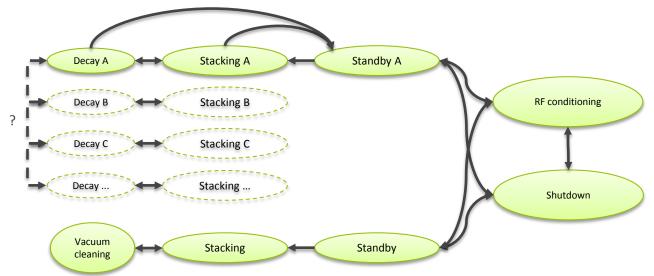
Energy feedback:

- Automatic compensation for loss of RF station
- Will require intelligent magnet optics tuning to compensate for particle E(s) profile changes **Bunch length feedback:**
- Compression knob will be linac phasing → need to tightly integrate with energy feedback
 Charge feedback:
- Stabilization of charge exiting the gun

Linac state transitions, current automation

RF systems: Largely manually adjusted, handled by RF operator.

Feedbacks: Simple trajectory feedback being tested. Adjustment of golden trajectory upon state change will be needed.


Magnets: Snapshot functionality handled via Bensikin. Scripting capability for snapshots should be there but not tested by the operators/physicists yet.

Laser system: Laser system in TANGO but autonomous. If laser has been shut down significant manual intervention needed.

Timing system: Partially in TANGO, operated manually.

R3/R1 states, features

Standby: relevant magnet settings applied, RF on, valves open, IDs open (?), no beam **Stacking:** active injection kicker. Once current is above certain limits, activate feedback on orbit/tune/coupling/bbb, allow closed IDs (?). MPS switches on orbit interlocks over 5 mA.

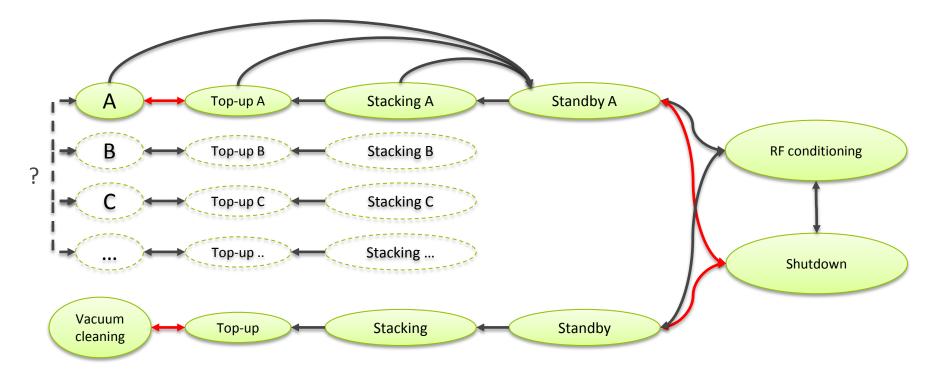
Decay: stored beam, no injection. Once current decreases below threshold, switch to stacking state.

RF conditioning: closed valves around RF cavities. RF power in relevant cavity.

Shutdown: magnet power supplies off, valves closed, RF power off

R3 feedbacks

Correction system	Actuator	Monitor
Orbit feedback, slow	Slow correctors, 10H + 9V per achr. RF	200 BPMs, Libera Brilliance+ SA data stream (10 Hz)
Orbit feedback, fast	Fast correctors, 2H + 2V per achr.	200 BPMs, Libera Brilliance+ FA data stream (10 kHz)
Coupling feedback	Trim coils in skew mode	B320B diagnostic beamline (vis. SR) B302B diagnostic beamline (vis. SR)
Tune feedback	Global quad adj. (QF + PFS)	Tune measurement
Transverse Bunch-by-Bunch feedback	Stripline antenna	RF pickup
Filling pattern feedback	Injection event timing	Stripline antenna
ID optics compensation feed-forward	Local quadrupoles (QFE + QDE)	-
ID coupling compensation feed-forward	Local trim coils in skew mode	-


R3 state transitions, current automation

Sub-system automation level:

- **RF**:
 - auto start-up functionality feature available in LLRF system. Not fully in use
 - RF group still conditioning/tuning the RF system
- Magnets:
 - cycling functionality (TANGO)
 - Resistance monitoring (TANGO)
- Vacuum:
 - scripted routines written to manage valves (MATLAB TANGO)
- Timing:
 - TANGO device to manage injection rep-rates, bucket selection, etc.
- Diagnostics:
 - Pinger/kicker tune measurement scripts available (MATLAB)
 - Orbit feedback running via MML (MATLAB)
 - Automation needed for diagnostic beam lines, spectrum analyzer

R3 state transitions, current automation

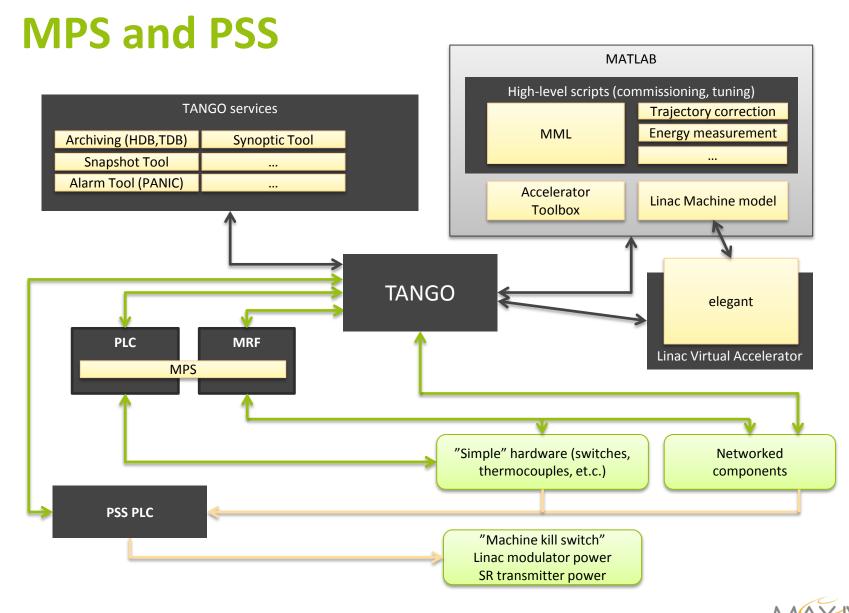
Transitions currently scripted in MATLAB / MML:

- *setmachineconfig.m* to get to a Standby state (RF currently excepted)
- srshutdown.m to get to Shutdown (RF currently excepted)
- *injecttraingui.m* to handle A <-> Top-up A (RF currently excepted)

MPS and PSS

Machine Protection System (MPS)

- Largely implemented in PLCs. Logic defined in functional descriptions reviewed by subsystem owners (vacuum). For fast interlocks the timing system is used.
- TANGO devices read/write PLC tags to integrate interlock monitoring/reset in the control system.
- Insertion Devices and front-ends belong to beamlines


Personnel Safety System (PSS)

- Implemented in separate PLC system that lives on both green (machine) and blue (beamline) network
- Kills the beam if all conditions are not fulfilled (RF power cut)
- Machine/BL system can only monitor tags and request resets
- Code is comparatively static, as code changes must be extensively tested.

Watchdog (Radiation Safety)

- PyAlarm TANGO application that monitors the system to provide extra safety layer
- Has different states depending on the machine state.

Need to tailor state transitions to avoid triggering PSS / MPS conditions!

Setting a state, snapshot system

Two systems currently used:

- Bensikin TANGO application
 - Stores/loads attribute set points (current, phase, etc.) defined in a context (main linac, transfer lines, storage ring)
 - Used primarily for the linac. Covers power supplies, electronic phase shifters.
 - Contexts limited re. number of parameters
- MML machine configurations
 - Used for the storage ring. Currently saves/loads set points and monitor values for PS currents, trim coil relays, cavity phase references, main frequency.

Inclusion of all relevant parameters into a snapshot needed urgently!

Thank you for your attention!

