
Towards end-to-end data-
management for large scale

x-ray facilities
Professor Brian Vinter

Niels Bohr Institute

University of Copenhagen

MSCA-ITN-2017 under the European Union’s H2020 program

Grant No.765604

Towards end-to-end data-
management for large scale

x-ray facilities
Professor Brian Vinter

Niels Bohr Institute

University of Copenhagen

MSCA-ITN-2017 under the European Union’s H2020 program

Grant No.765604

Tons of good news in x-ray technology

• Sources are getting brighter
• Sources are getting still more stable
• Spatial detector resolution grows exponentially
• Temporal detector resolution grows exponentially
• The x-ray user community is growing

The downside

• The size of each detection grows exponentially
• Frequency of detection grows exponentially
• Frequency of experiment grows rapidly

The challenges

• We need to store much more data
• Individual datasets are too large for a PC to store
• Individual datasets are too large for a PC to process
• Hand-me-down Matlab scripts are not usable for such large datasets
• Many of the new user communities are not computing natives

Moonshot proposal

Can we build a software framework that supports huge datasets,
has a user friendly interface, offers an easy-to-use compute service,
and facilitates cross-organizational collaboration?

Initial Requirements

• Large data-storage
• Fast storage
• Data Management features

• Online Inspection
• Archiving

• Build-in processing support
• Interactive
• Batch Processing

• Cross Organization Support

Current Prototype

• Imaging Data Management System
• Not really imaging specific so poor choice of name!

• Alternative entry to UCPH ERDA system
• 10 PB storage
• File system
• Project sharing
• Folder Synchronization
• Jupyter Interactive Processing
• MiG grid-backend

Large Data Storage

Large Storage

• Dirt cheap
• Much larger disk systems per node
• Disk redundancy
• Server redundancy
• 2 x 100 Gb input

Data Management

Interactive Processing

• Jupyter based interface
• Python
• R
• C++
• C#
• (others are possible)

• Three kinds of resources
• DAG (64 cores 256 GB memory)
• HEL (DGX-1)
• MODI (Cluster: 512 cores, 1TB memory)

Interactive Processing

Batch Processing

• Run completely at user-level
• No custom grid software

• On Unix based systems
• Resource Owners decide which projects can use their computers

• And when
• Automatic error recovery

Batch Processing

Cross Organization Support

Pn

Dn Cn

Pn

P1
P2

Dn Cn

D1 C1

C2

In

User

UCPH

UAntwerp
MAX IV

Cross Organization Support

Initial Requirements

üLarge data-storage
üFast storage
üData Management features

üOnline Inspection
üArchiving

üBuild-in processing support
üInteractive
üBatch Processing

üCross Organization Support

Future Developments

• High Speed Real Time Data Analysis
• Usage of low power storage
• Integrating batch-setups in Jupyter
• Securing data integrity with signing

High Speed Real Time Data Analysis

40 Gb/s

High Speed Real Time Data Analysis

40 Gb/s 40 Gb/s

100 Mb/s

High Speed Real Time Data Analysis
TCP ZMQ

Decom-
press

TCPZMQ
Decom-
press

Computational
kernel

High Speed Real Time Data Analysis
def tth2Dsimple(delta,N,M,params):
 # get parameters
 n0 = params['n0'] # n0 - detector zero
 m0 = params['m0'] # m0 - detector zero
 wn = params['wn'] # wn/L
 wm = params['wm'] # wm/L
 phi = params['phi'] # rotation around detector axis
 # calculate pixel coordinates in the lab ref. system
 # apply detector phi-rotation
 c = np.cos(phi)
 s = np.sin(phi)
 tN = c*(N-n0)*wn - s*(M-m0)*wm
 tM = s*(N-n0)*wn + c*(M-m0)*wm
 # main axis rotation
 c = np.cos(delta)
 s = np.sin(delta)
 X = c - s*tN
 Y = s + c*tN
 Z = tM
 R = np.sqrt(X**2 + Y**2 + Z**2)
 tth = np.arccos(X/R)
 return tth

Bohrium

• Bohrium provides automatic acceleration of array operations in
Python/NumPy, C, and C++ targeting multi-core CPUs and GP-GPUs.

import numpy as np

a = np.arange(10)
b = (a + 2) * a
c = np.histogram(b)

a = [10]
t0 = [10]
arange a, 10
add, t0, a, 2
mul b, t0, a
hist c, b

OpenMP OpenCL CUDA

Bohrium

Synchronous Message Exchange

Synchronous Message Exchange

• Simple testing and debugging
• Human readable VHDL
• Automatic testbench

Vision

Grand Vision

Grand Vision

Jupyter
Workbook Meow Bohrium SME HISS

Proposal: Fighting Scientific Misconduct

• Scientific misconduct is a problem
• With FAIR it may become worse (or not!)
• Proposal: We establish a scientific block-chain

• Instruments signs the raw data
• Software that is provided by the facility also sign the result

• Outcome: We can trace the validity of data until the researcher runs
untrusted software on the data
• Which makes it very clear where the problem arises

