Towards end-to-end data-
management for large scale
x-ray facilities

Professor Brian Vinter

Niels Bohr Institute
University of Copenhagen

MSCA-ITN-2017 under the European Union’s H2020 program
Grant No.765604

Towards end-to-end data-
management for large scale

X=rg¥ facilities

Professor Brian Vinter

Niels Bohr Institute
University of Copenhagen

MSCA-ITN-2017 under the European Union’s H2020 program
Grant No.765604

Tons of good news in x-ray technology

* Sources are getting brighter

* Sources are getting still more stable

 Spatial detector resolution grows exponentially

* Temporal detector resolution grows exponentially

* The x-ray user community is growing \

The downside

* The size of each detection grows exponentially
* Frequency of detection grows exponentially
* Frequency of experiment grows rapidly

The challenges

* We need to store much more data

* Individual datasets are too large for a PC to store

* Individual datasets are too large for a PC to process

* Hand-me-down Matlab scripts are not usable for such large datasets
* Many of the new user communities are not computing natives

Moonshot proposal

Can we build a software framework that supports huge datasets,

has a user friendly interface, offers an easy-to-use compute service,
and facilitates cross-organizational collaboration?

Initial Requirements

* Large data-storage
* Fast storage
 Data Management features
* Online Inspection
* Archiving
* Build-in processing support
* Interactive
* Batch Processing

* Cross Organization Support

Current Prototype

* Imaging Data Management System
* Not really imaging specific so poor choice of name!

* Alternative entry to UCPH ERDA system
* 10 PB storage

File system

Project sharing

Folder Synchronization

Jupyter Interactive Processing
MiG grid-backend

Large Data Storage

Large Storage

* Dirt cheap
* Much larger disk systems per node

* Disk redundancy
 Server redundancy
* 2 x 100 Gb input

-

LELL

Data Management

o [] @8 File Manager X +

& C O & idmc.dk/wsgi-bin/fileman.py * * MO0 e @O
ucpHIDMC Imaging Data Management Center

File Manager

| %% subm
| A / IDMC data Skull projections
| % 30bs =
-

| & workgroups i) Image:
‘ < IDMC/data/Skull/projectionsprojection.045.raw

Jupyter
‘ - m Image Type: raw

Settings

Data Type: float32

| %f Logout S——

Reset Set Cutoff Offset: 0

Min: 0.0000e+0 X Dimension: 256

Max: 3.7751e+0 Y Dimension: 192

Slider Scale: 6.7547e+1 Min Value: 0.0000e+0

Max Value: 3.7751e+0

DeepComputeProcessor
projection.032.raw 0.00 B raw 2018-08-11 18:02
Demo
@ ERDA-stats projection.033.raw 192.00 KB raw 2018-11-13 17:37
Exams projection.034.raw 192.00 KB raw 2018-11-13 17:37
« GreenClimate projection.035.raw 192.00KB raw 2018-11-13 17:37
@ HPC-ISMS
@ HPC-Strategy projection.036.raw 192.00 KB raw 2018-11-13 17:37
@ IDMC projection.037.raw 192.00 KB raw 2018-11-13 17:37
data projection.038.raw 192.00 KB raw 2018-11-13 17:37
CaseGFRP
LS projection.039.raw 192.00 KB raw 2018-11-13 17:37
Sl projection.040.raw 192.00 KB raw 2018-11-1317:37
282 files in current folder of total 39.75 MB in size.

Enable touch screen interface (all clicks trigger menu) Show hidden files and folders

Exit code: 0 Description: OK (done in 0.267s)

I © Support & Questions

Privacy Policy & Cookie Policy

Interactive Processing

* Jupyter based interface
e Python
* R
e C++

CH

(others are possible)

* Three kinds of resources
* DAG (64 cores 256 GB memory)
 HEL (DGX-1)
 MODI (Cluster: 512 cores, 1TB memory)

Interactive Processing

[J [J OB jupyter X JupyterLab X +
& CcC O @& idmc.dk/DAG/user/vinter_nbi_ku_dk/lab? * M ® @ 0 ® @ [+]
. File Edit View Run Kernel Hub Tabs Settings Help
+ b 4 Cc Launcher X [A Assignment 2.ipynb °

A > ... > Week 2 > Solution B+ XTO [» m C Markdownv Python3 O
% Name - Last Modified

[® Assignment 2.ipynb ayear ago .
@ [A] Exercises.ipynb ayearago ChOCOKOIate InspeCtlon

[chocolate.npy ayear ago

The below code loads and displays a numpy array that holds an x-ray image of two chocolate bars we wish to analyze.

y’

from numpy import load
from matplotlib.pyplot import imshow

G

data = load('chocolate.npy')
imshow(data)

<matplotlib. image.AxesImage at 0x7ff4668d4d68>

0

200

400

600

800

1000

0 250

AT: Clearly the image is much larger than the chocolate we wish to analyze, how would you go about writing a program that finds a box that holds the
parts of the image that has chocolate in it? This is called a bounding-box - it will still have some background in it, since the chocolate-bars are not nicely
aligned in the image, but the large areas with only background must be removed. Explain your approach briefly

If we find the average value of every row and every column the derivative of those functions will clearly mark where the chocolate starts and ends.

A2: Implement you solution in Python.

Batch Processing

* Run completely at user-level
* No custom grid software

* On Unix based systems
* Resource Owners decide which projects can use their computers
 And when

* Automatic error recovery

Batch Processing

® © ® @ suwmitob x +

&« C (¢ & idmc.dk/wsgi-bin/submitjob.py % * MO0 e @O

ucpH IDMC Imaging Data Management Center
— B s

%% Submit Job
%% Jobs

This page is used to submit jobs to the grid.

There are 3 interface styles available that you can choose among: | fields style , textarea style , sfiles style

* Workgroups

Jupyt Please note that changes to the job description are *not* automatically transferred if you switch style.
upyter

#~ Settings Please fill in your job description in the fields below:

<f Logout

Please fill in one or more fields below to define your job before hitting Submit Job at the bottom of the page. Empty fields will simply result in the default value being used and each field
is accompanied by a help link providing further details about the field.

Execute Commands: O help

echo 'hello grid!"
echo '..each line here is executed"

Input Files: © help

Output Files: © help

E: Files: © help

Mount: © help

Cross Organization Support

MMMMM
UUUUUUUU

Cross Organization Support

[NON | tst.py — ~/Dow

tst.py
import time
from PIL import Image
from skimage.io. plugins.pil plugin import pil to ndarray
share = IDMCShare(’SHARELINKID')
filel = 'rec 8bit ph@3 cropC kmeans scale510.
start = time.time()
with share.open(filel, ’'rb’) as fh:
load start = time.time()

pil image = Image.open(io.BytesIO(fh.read()))

nd image = pil to ndarray(pil image)
load stop = time.time()

foam labelling(nd image)
stop = time.time()
share.close()

Initial Requirements

v'Large data-storage
v'Fast storage

v'Data Management features
v'Online Inspection
v'Archiving

v'Build-in processing support
v'Interactive
v'Batch Processing

v'Cross Organization Support

Future Developments

* High Speed Real Time Data Analysis
* Usage of low power storage

* Integrating batch-setups in Jupyter
* Securing data integrity with signing

High Speed Real Time Data Analysis

7

40 Gb/s

High Speed Real Time Data Analysis

100 Mb/s

High Speed Real Time Data Analysis

Decom-

= TCP 2 ZMQ —

press

|

Computational

kernel

Decom-

ZMQ | TCP

A 4

press

High Speed Real Time Data Analysis

def tth2Dsimple(delta,N,M,params):

n0 = params['n0']
mO0 params['m0’]
wn = params['wn']
wm params['wm']
phi = params['phi']

= np.cos(phi)

= np.sin(phi)
= ¢c*(N-nO)*wn - s*(M-m0)*wm
= s*(N-n0)*wn + c*(M-m0)*wm

= np.cos(delta)

= np.sin(delta)

= Cc = s*tN

= s + c*tN

= tM

= np.sqrt(X**2 + Y**2 + Z**2)
tth = np.arccos(X/R)
return tth

Bohrium

* Bohrium provides automatic acceleration of array operations in
Python/NumPy, C, and C++ targeting multi-core CPUs and GP-GPUs.

> python compute.py

A

> python -m bohrium compute.py

Bohrium

a = [10]

t0 = [10]
import numpy as np arange a, 10
z:x(lg-irazu;gf(;m » add, t0, a, 2
¢ = np.histogram(b) mul b, t0, a

hist ¢, b

OpenCL CUDA

Synchronous Message Exchange

C# —
PYySME —

—9» SMEIL > VHDL » Hardware

Synchronous Message Exchange

* Simple testing and debugging
* Human readable VHDL

[i public interface ICounterControl : IBus ({
Automatic testbench blic interface IcounterControl i IBus {
[se)] bool Reset { get; set; }
}

public interface ICounterData : IBus {
[Initial(0)] int Value { get; set; }
}

public class Counter {
private readonly ICounterControl Control = CreateBus<ICounterControl>();
private readonly ICounterData Data = CreateBus<ICounterData>();

public void OnReady() {
if (Control.Reset) {
Data.Value = 0;
} else if (Control.Vvalid) {
Data.Value++;
}
}
}

Vision
NumPy

Bohrium

v
SMEIL

2
VHDL

Hardware

import numpy as np

def kernel(a, c):
al[:] = np.arange(10)
b= (a+2) *a
c[:] = np.histogram(b)

Grand Vision

<u

Grand Vision

Jupyter :

Proposal: Fighting Scientific Misconduct

* Scientific misconduct is a problem
* With FAIR it may become worse (or not!)

* Proposal: We establish a scientific block-chain
* Instruments signs the raw data
e Software that is provided by the facility also sign the result
e OQutcome: We can trace the validity of data until the researcher runs

untrusted software on the data
* Which makes it very clear where the problem arises

