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Tons of good news in x-ray technology

• Sources are getting brighter
• Sources are getting still more stable
• Spatial detector resolution grows exponentially
• Temporal detector resolution grows exponentially
• The x-ray user community is growing



The downside

• The size of each detection grows exponentially
• Frequency of detection grows exponentially
• Frequency of experiment grows rapidly



The challenges

• We need to store much more data
• Individual datasets are too large for a PC to store
• Individual datasets are too large for a PC to process
• Hand-me-down Matlab scripts are not usable for such large datasets
• Many of the new user communities are not computing natives



Moonshot proposal

Can we build a software framework that supports huge datasets, 
has a user friendly interface, offers an easy-to-use compute service, 
and facilitates cross-organizational collaboration?



Initial Requirements

• Large data-storage
• Fast storage
• Data Management features

• Online Inspection
• Archiving

• Build-in processing support
• Interactive
• Batch Processing

• Cross Organization Support



Current Prototype

• Imaging Data Management System
• Not really imaging specific so poor choice of name!

• Alternative entry to UCPH ERDA system
• 10 PB storage
• File system
• Project sharing
• Folder Synchronization
• Jupyter Interactive Processing
• MiG grid-backend



Large Data Storage



Large Storage

• Dirt cheap
• Much larger disk systems per node
• Disk redundancy
• Server redundancy
• 2 x 100 Gb input



Data Management



Interactive Processing

• Jupyter based interface
• Python
• R
• C++
• C#
• (others are possible)

• Three kinds of resources
• DAG (64 cores 256 GB memory)
• HEL (DGX-1)
• MODI (Cluster: 512 cores, 1TB memory)



Interactive Processing



Batch Processing

• Run completely at user-level
• No custom grid software

• On Unix based systems
• Resource Owners decide which projects can use their computers

• And when
• Automatic error recovery



Batch Processing



Cross Organization Support
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Cross Organization Support



Initial Requirements

üLarge data-storage
üFast storage
üData Management features

üOnline Inspection
üArchiving

üBuild-in processing support
üInteractive
üBatch Processing

üCross Organization Support



Future Developments

• High Speed Real Time Data Analysis
• Usage of low power storage
• Integrating batch-setups in Jupyter
• Securing data integrity with signing



High Speed Real Time Data Analysis

40 Gb/s



High Speed Real Time Data Analysis

40 Gb/s 40 Gb/s

100 Mb/s



High Speed Real Time Data Analysis
TCP ZMQ

Decom-
press

TCPZMQ
Decom-
press

Computational
kernel



High Speed Real Time Data Analysis
def tth2Dsimple(delta,N,M,params): 
    # get parameters 
    n0 = params['n0'] # n0 - detector zero 
    m0 = params['m0'] # m0 - detector zero 
    wn = params['wn'] # wn/L 
    wm = params['wm'] # wm/L 
    phi = params['phi'] # rotation around detector axis 
    # calculate pixel coordinates in the lab ref. system 
    # apply detector phi-rotation 
    c = np.cos(phi) 
    s = np.sin(phi) 
    tN = c*(N-n0)*wn - s*(M-m0)*wm 
    tM = s*(N-n0)*wn + c*(M-m0)*wm 
    # main axis rotation 
    c = np.cos(delta) 
    s = np.sin(delta) 
    X = c - s*tN 
    Y = s + c*tN 
    Z = tM 
    R = np.sqrt( X**2 + Y**2 + Z**2 ) 
    tth = np.arccos(X/R) 
    return tth 
 



Bohrium

• Bohrium provides automatic acceleration of array operations in 
Python/NumPy, C, and C++ targeting multi-core CPUs and GP-GPUs. 



import numpy as np 
 
a = np.arange(10) 
b = (a + 2) * a 
c = np.histogram(b)

a = [10] 
t0 = [10] 
arange a, 10 
add, t0, a, 2 
mul b, t0, a 
hist c, b

OpenMP OpenCL CUDA

Bohrium



Synchronous Message Exchange 



Synchronous Message Exchange 

• Simple testing and debugging 
• Human readable VHDL 
• Automatic testbench 



Vision



Grand Vision



Grand Vision

Jupyter
Workbook Meow Bohrium SME HISS



Proposal: Fighting Scientific Misconduct

• Scientific misconduct is a problem
• With FAIR it may become worse (or not!)
• Proposal: We establish a scientific block-chain

• Instruments signs the raw data
• Software that is provided by the facility also sign the result

• Outcome: We can trace the validity of data until the researcher runs 
untrusted software on the data
• Which makes it very clear where the problem arises




