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extern int myMod(int, int);
void kernel pe(global int* A,

global int* B,
global int* C){

int gid = get_global_ id(0);
int a A[gid];

int b B[gid];

C[gid] = myMod(a, b);
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Status so far

e Builds take +3 hours
e Essentially no debug information
e Appears unable to hold state

e New SDK 19.03, build time ~20min

e No binary for 19.x builds due to license issues

e Spent more than 2 months, incl. support from Intel,
and still no working 19.x binary produced



Bohrium + SME

Status



Same setup
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Bohrium

Bohrium provides automatic acceleration of array operations in
Python/NumPy, C, and C++ targeting multi-core CPUs and GPGPUs.

> python compute.py

> python -m bohrium compute.py



a = [10]

t0 = [10]
import numpy as np arange a, ]_O
a = np.arange(10)
P D npearenoe(l » add, t0, a, 2
c = np.histogram(b) mU_l b, tO, a
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import numpy as np

def kernel (source, sink):

b= (a+ 2) * a
sink = np.histogram(b)

a = np.arange(10)
c = np.empty(5)

fpga execute(kernel, [a,

cl)
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Current

import numpy as np ¢ = [10]

t0 = [10]
iz?i'irg?gf(io) —> arange a, 10 —> SME
print b add, tO, a, 2

mul b, t0, a



FPGA & TCP
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TCP on FPGA

TCP is generally a swiss army knife:

e Handles packet loss

e Handles packet out-of-order
e Flow control/congestion

o Etc

Which we don't need on a controlled network...

Unfortunately, the detector vendors decide the protocol: TCP



TCP on FPGA

2x Msc Students did not manage to get a
working TCP solution in 6 months

Open Source TCP implementations are board specific

A newer Open Source solution exists, but it fills most of the
board just for handling buffers and concurrent connections

Proprietary ToE solutions exist, but are expensive and
requires vendor lock-in

General advice is: don't do TCP in FPGA logic



TCP offload Engine (ToE)

Cards exist, but low-level documentation is
lacking and card specific

Seems to favor the "Chimney" solution, due to
security implications with a duplicated TCP stack



Future plans



DPDK

Linux Kernel without DPDK Linux Kernel with DPDK

User Space
DPDK Libraries

Linux Kernel Linux Kernel

Kernel Space
Network Driver Driver
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Hardware
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Combining CPU + FPGA
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