MAX IV - UCPH

Collaboration Workshop

Kenneth Skovhede
MAX 1V, 2019-12-09

SME / OpenCL

Status

The setup

100 Mb/s

image from Intel

image from Dectris

MATLAB

The Language of Technical Computing

s

extern int myMod(int, int);
void kernel pe(global int* A,

global int* B,
global int* C){

int gid = get_global_ id(0);
int a A[gid];

int b B[gid];

C[gid] = myMod(a, b);

gid

Load A ! Load B g

r

3

oready ivalid

iready ovalid

images copyright Inte

r

gid

3 cydes

(Upstream module)

oready| ivalid A B

iready ovalid C

(" o)

(Downstream module)

Overview

|- |
1 L/ |
bo YD1 B D02 D3 |

L/ |
L =
po_Jor I o2 o3 |l

Status so far

e Builds take +3 hours
e Essentially no debug information
e Appears unable to hold state

e New SDK 19.03, build time ~20min

e No binary for 19.x builds due to license issues

e Spent more than 2 months, incl. support from Intel,
and still no working 19.x binary produced

Bohrium + SME

Status

Same setup

100 Mb/s

40 Gb/s

image from Intel

image from Dectris

MATLAB

The Language of Technical Computing

Bohrium

Bohrium provides automatic acceleration of array operations in
Python/NumPy, C, and C++ targeting multi-core CPUs and GPGPUs.

> python compute.py

> python -m bohrium compute.py

a = [10]

t0 = [10]
import numpy as np arange a,]_O
a = np.arange(10)
P D npearenoe(l » add, t0, a, 2
c = np.histogram(b) mU_l b, tO, a

g -"--"‘I . T
image from Inte’ image from Nvidia

OpenMP OpenCL CUDA

import numpy as np

def kernel (source, sink):

b= (a+ 2) * a
sink = np.histogram(b)

a = np.arange(10)
c = np.empty(5)

fpga execute(kernel, [a,

cl)

Oad

image from Xilinx

Current

import numpy as np ¢ = [10]

t0 = [10]
iz?i'irg?gf(io) —> arange a, 10 —> SME
print b add, tO, a, 2

mul b, t0, a

FPGA & TCP

Same setup

100 Mb/s

40 Gb/s

image from Intel

image from Dectris

MATLAB

The Language of Technical Computing

TCP on FPGA

TCP is generally a swiss army knife:

e Handles packet loss

e Handles packet out-of-order
e Flow control/congestion

o Etc

Which we don't need on a controlled network...

Unfortunately, the detector vendors decide the protocol: TCP

TCP on FPGA

2x Msc Students did not manage to get a
working TCP solution in 6 months

Open Source TCP implementations are board specific

A newer Open Source solution exists, but it fills most of the
board just for handling buffers and concurrent connections

Proprietary ToE solutions exist, but are expensive and
requires vendor lock-in

General advice is: don't do TCP in FPGA logic

TCP offload Engine (ToE)

Cards exist, but low-level documentation is
lacking and card specific

Seems to favor the "Chimney" solution, due to
security implications with a duplicated TCP stack

Future plans

DPDK

Linux Kernel without DPDK Linux Kernel with DPDK

User Space
DPDK Libraries

Linux Kernel Linux Kernel

Kernel Space
Network Driver Driver

Network
Hardware

image from DPDK

Combining CPU + FPGA

2)DPDK %

DATA PLANE DEVELOPMENT KIT

Kernel control

« »

image from Intel 100 GBits/s => 12,5 GByte/S
PCle v4 => 16x ~2GBytes/s

GyeL

