

Operational challenges during COVID19

Hans Fangohr
Data Analysis Group
Data Unit
European XFEL
Germany

LEAPS-IT Workshop Lund (Zoom) 18 June 2020

Outline

- Facility status
- Remote data analysis
 - offline
 - online
- Remote control
- Citizen science project: Tracking COVID19 infections and deaths in your region (OSCOVIDA)
- Communication: instant messaging
- Disclaimer: views my own

COVID-19 reduced operation

- European XFEL went into reduced operation with minimal staff on site by on 16 March
- Extended use of home office
 - Software work
 - Data analysis
 - Infrastructure development
 - Publications
- Restart with < 30% staff on site started 4 May</p>
- No regular user operation this year

#homeoffice - Data Analysis team at @EuropeanXFEL working from home to #flattenthecurve . A mixture of instant chat, email, video conferencing, GitHub and Gitlab issues help staying in touch. Seen one cat on screen during video meetings so far. @AcademicChatter #coronavirus

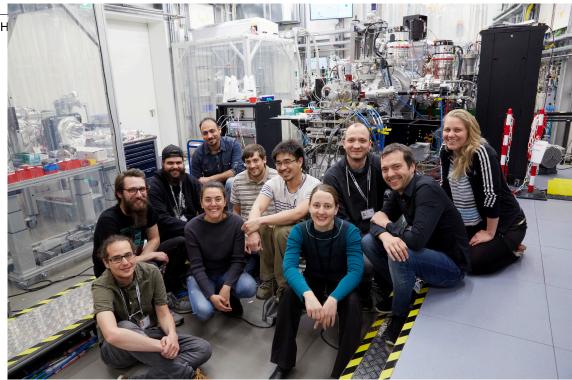
10:24 PM · Mar 17, 2020 · Tweetbot for Mac

On site

- COVID-19 Safety Guidelines and training for work on site
 - Increased hygiene and distancing measures in place
 - Occupancy restrictions for all European XFEL rooms
 - ► Only 1 person per office
 - ► Maximum occupancy given at door
 - ► Includes experiment hutches
- Staff members only allowed on site with permission of Group Leader
 - Home office preferred if possible

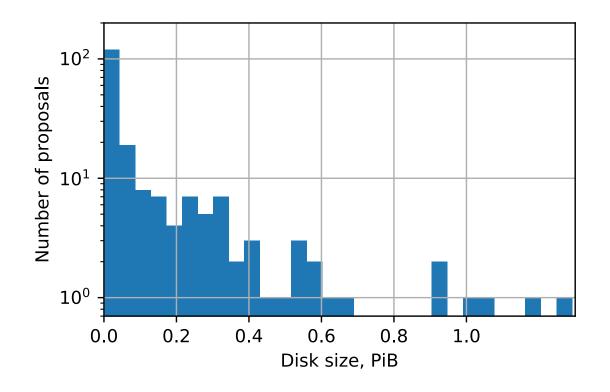
XFEL.EU SR-2020-002-01.0

SAFETY REGULATION

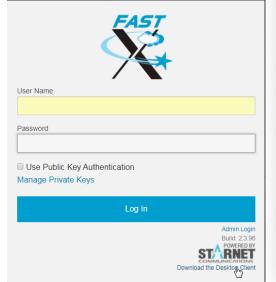

Hygiene Guidelines for Safe Operation During the COVID-19 Epidemic

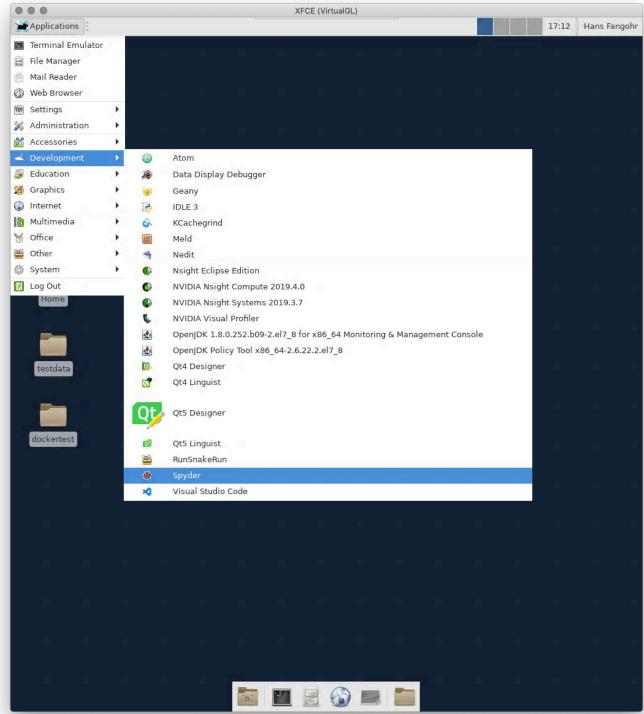
Prof H

Remote experiments


- Issues
 - Can users come to the facility?
 - What about social distancing / PP during experiment?
 - ► COVID19 regulation: at most 2 people in hutch
- "Unattended operation of experiments"
 - impossible
 - people in hutch during experiment ~10
- Remote control of experiments
 - facility staff acting on behalf of users
 - user representatives may join them
 - Other users *connected remotely*

Remote offline data analysis


- Data set size
 - ~100 TB not unusual per experiment
 - > 1 PB is possible
 - ► Most offline data analysis is remote already
- Remote offline data analysis
 - ssh -X
 - FastX
 - JupyterHub



Operational challenges for research facilities during COVID19

FastX

- Remote Desktop (VNC, NoMachine, ...)
- Graphical user interface (including window manager) made available to user via dedicated app or web browser
- Better performance than X-forwarding

JupyterHub: use HPC resources through Jupyter Notebook from remote

- JupyterHub
 - users connect through browser and https
 - serve notebooks on facility hardware
 - use existing authentication systems
 - connect to users' file storage
- Popular with users:
 - browser and OS of choice
 - works locally and remotely the same
- Orthogonal aspects:
 - Good for reproducibility
 - Cannot provide for all use cases (GUIs, ...)

Maxwell Jupyter Job Options

	Maxwell partitions						
	Choice of GPU® none ∨						
	Note: For partitions without GPUs (or choice of GPUs) the GPU selection will be set to 'none'						
	Constraints V100&INTEL						
	Note: This will override GPU selections!						
	Number of Nodes① 4 🕏						
Note:Number of nodes will be set to 1 on shared jhub partition!							
	Job duration 1 hour ∨						
Note: on the shared Jupyter partition (jhub) the time limit is always 7 days!							
	Launch modus⊕ Launch JupyterLAB ∨						
	Remote Notebook PyFAI Tutorials (Collection) V						

Node and GPU availability						
Partition	# nodes	# avail	# GPUs avail	# P100 avail	# V100 avail	
jhub	3	3	0	0	0	
maxwell	61	46	0	0	0	
maxgpu	19	12	12	1	10	
all	327	188	0	0	0	
allgpu	88	67	67	48	10	

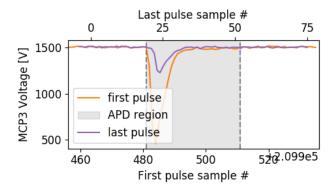
Use case: notebooks as recipes

- Pre-populate notebook with cells to carry out a particular type of data analysis
 - provide a directory full of such recipes to users
 - users execute cells during beamtime and later
- Convenient compromise between
 - static recipe (=script)
 - interactive exploration

European XFEL

```
In [3]: import ToolBox as tb
```

10

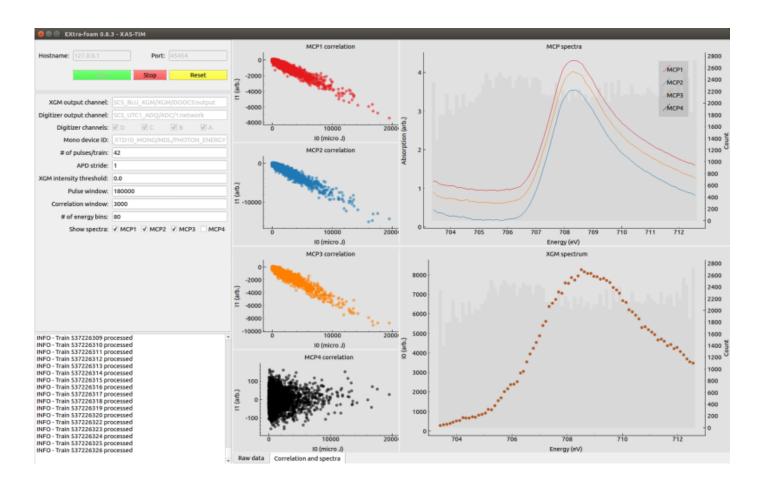

X-ray Absorption Spectroscopy

Step 1: Load data and align them by train id and pulse id

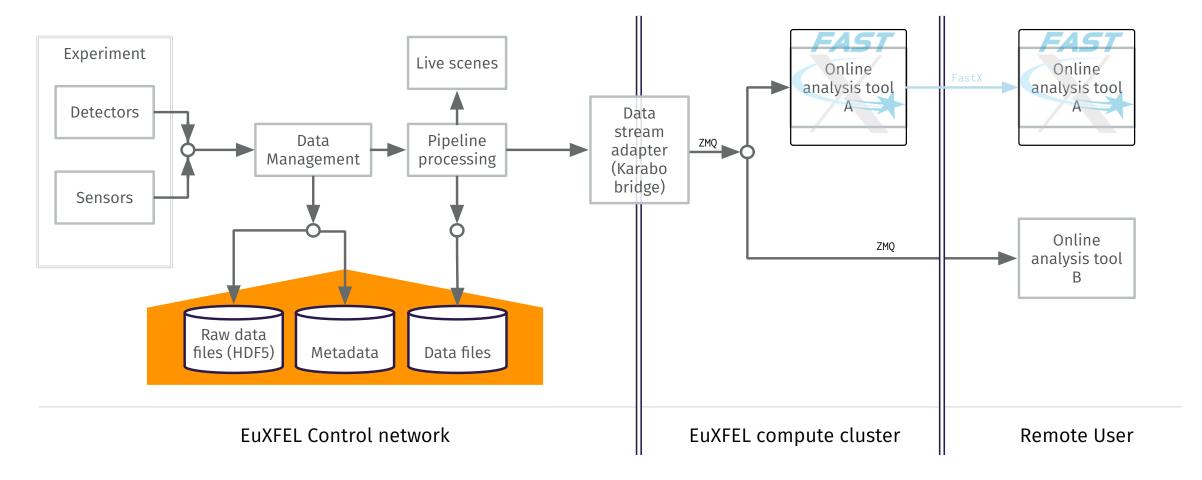
No problems found

Step 2: check the pulse integration window

```
In [5]: tb.checkTimApdWindow(nrun, mcp=3)
    no raw data for MCP3. Loading trace from MCP3
```

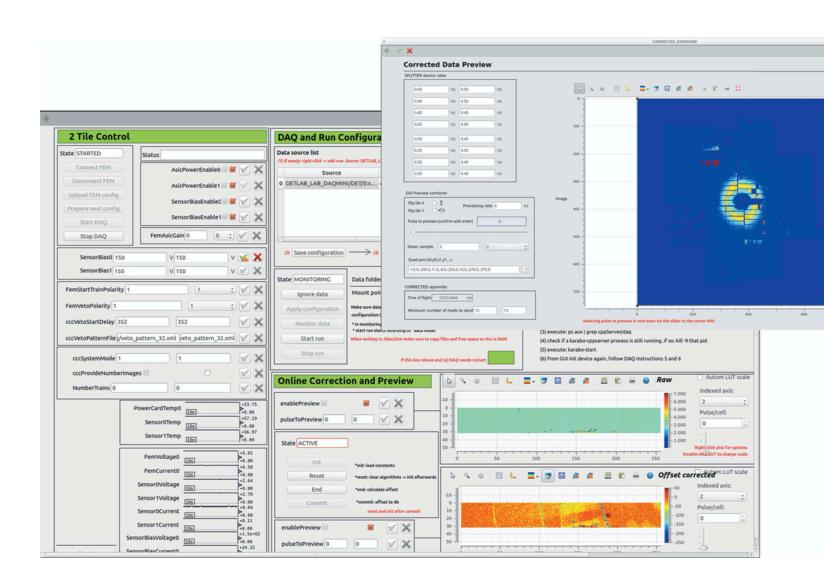


Step 3: bin the data and plot the XAS spectrum



Online data analysis

Fast feedback during experiment



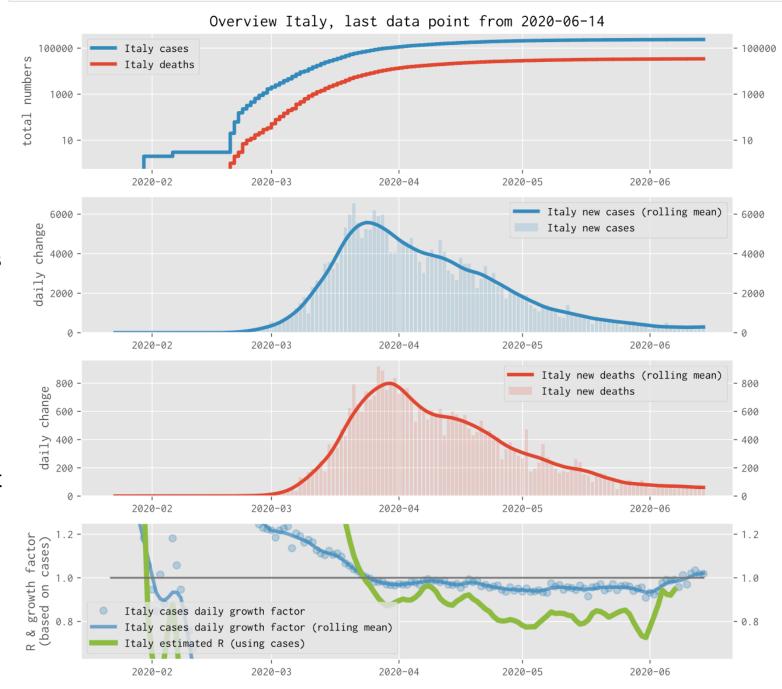
Remote Data Analysis options

Remote control

- Can users control hardware from remote?
 - ► No, safety regulations.
- Users need to participate in experiment
 - ► Read-only view of control panels.

Remote control

- Similar options as for remote data analysis
 - Either have read-only control panels and forward display via FastX (or other remote desktop software)
 - Or provide the software (here Karabo GUI client) to run on their remote hardware, and offer Karabospecific data stream to connect to
 - ► Preferred, as data can be interrogated interactively (zoom, pan, etc)
- Must be read-only.


Operational challenges for research facilities during COVID19

Open Science COVID19 Analysis (OSCOVIDA) project

- Photon and Neutron Open Science Cloud (PaNOSC) activity
- Dashboard with time series analysis
 - infections and deaths
 - updated daily
- Data sets for
 - All countries (Johns Hopkins)
 - US states (Johns Hopkins)

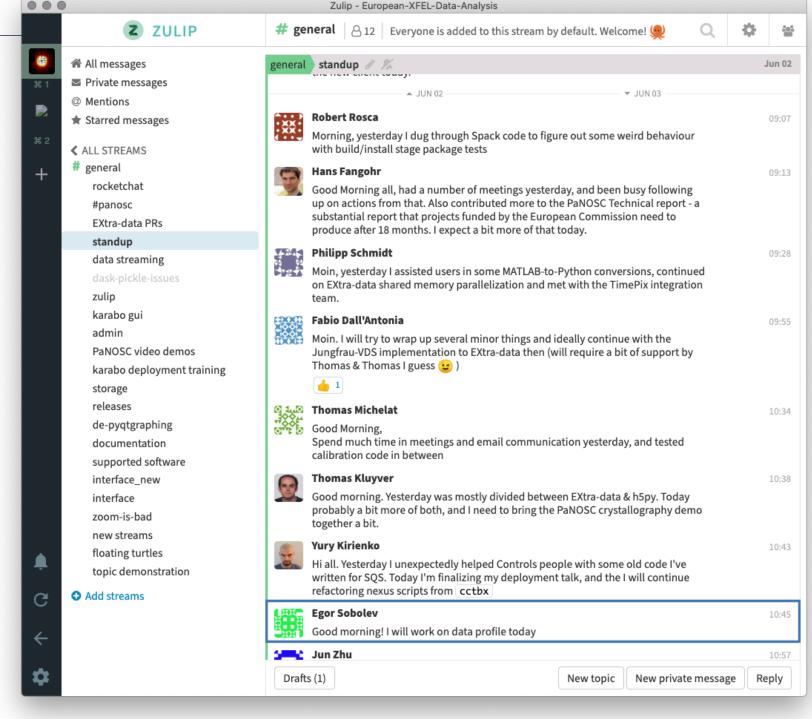
European XFEL

- 412 districts in Germany (Robert Koch Institute)
- https://oscovida.github.io

Open Science COVID19 Analysis (OSCOVIDA) project

- Motivation
 - put media reports into context
 - motivate social distancing
 - track pandemic & new outbreaks
- Open Science & citizen science
 - Data sources are public
 - Processing code is public
- Re-producible and re-usable
 - Plots created in Jupyter Notebooks
 - Can re-execute each notebook in the cloud (Binder)
 - Can re-use and extend analysis
- Contributions welcome

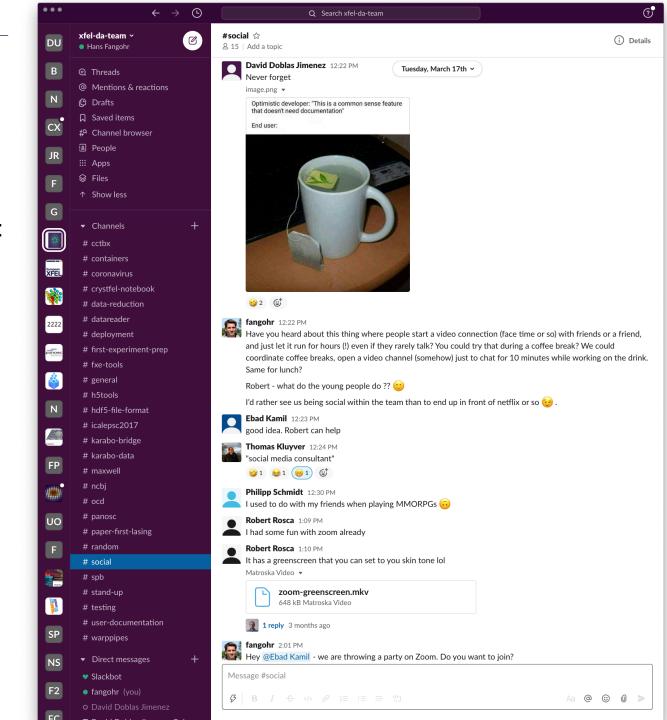
OSCOVIDA: Open Science COVID Analysis


Home All regions Countries Germany US Articles Analysis About

Tracking plots: Countries of the world

Show 25 \$ entries	Search:			
Location	Total cases	Total deaths	New cases last week	
Brazil	867,624	43,332	175,866	
US	2,094,058	115,732	149,749	
India	320,922	9,195	63,436	
Russia	528,267	6,938	61,194	
Pakistan	144,478	2,729	40,807	
Chile	174,293	3,323	40,143	
Peru	229,736	6,688	33,221	
Mexico	146,837	17,141	29,734	
Saudi Arabia	127,541	972	25,627	
South Africa	70,038	1,480	21,753	
Bangladesh	87,520	1,171	21,751	
Iran	187,427	8,837	15,638	
Qatar	79,602	73	10,812	

Communication – instant messaging / chat tools


- Mixture between email and phone call
 - interactive
 - but asynchronous
- Tools tried
 - Slack, RocketChat, Zulip, Mattermost, Zoom(chat), [IRC in the past]
- Example:
 - Data Analysis group at FuXFFI

Communication – instant messaging / chat tools

- High potential for communication improvements:
 - Within-team
 - Within-facility
 - Remote-teams
 - ► Social glue
 - For user groups
 - ► Meta data capture
- Recent insight:
 - Zulip has interesting concept of "topics" within "channels/streams".

Thank you for your attention

