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1. General background

Light that interacts with matter can be either absorbed and/or scattered.
The latter is a prerequisite for our ability to see, and combined with absorption
phenomena, enables color vision. In a more general sense, there are essentially
two ways by which we can “see”, if by seeing we mean determining the size and
the shape of objects. The first, and most commonly known way to see, we may
refer to as imaging. Here, by the use of a lens, the light that is reflected or
scattered from an object is focused to create an image of the object on a screen.
This is in principal how our eyes work. The light is focused by our eye lenses,
sometimes in combination with glasses when the eye lenses are not operating
properly, to create an image on the retina in the back of the eye, which is then
analyzed by the brain. The second way to “see”, we call scattering or diffraction.
Here, we work without the focusing lens and instead measure and analyze the
scattered intensity as a function of the scattering angle, 6, as illustrated
schematically in Figure 1.
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Figure 1. Schematic illustration of a (small angle) scattering experiment. An
incoming primary beam, with wave vector l_c)o, impact on a sample and the
scattered radiation (wave vector E) is here recorded by a two dimensional

detector. The scattering vector, § = k— k_o), is also illustrated.

The scattered intensity, I(q), is generally presented, not as a function of
the scattering angle, but as a function of the so called scattering vector

(magnitude) q = |g|, where § = Kk — k_(; (see Figure 1) is the difference between

the wave vectors of the scattered (E) and incident (k_o’) beams, respectively. If the



scattering event is purely elastic, |E| = |k_(;| = 27”, where A is the wavelength of

the radiation, the scattering vector magnitude is related to the scattering angle
through

q= 4%sing (1)

In a scattering or diffraction experiment!, a scattering or diffraction pattern is
obtained that carries the information about object’s size and shape, the number
or concentration of objects and how the objects are distributed in space. A
common and simple demonstration of the phenomenon, which can be found in
general physics textbooks, is the diffraction from a thin slit, illustrated in Figure
2. A laser beam passing through a thin slit gets diffracted, and a characteristic
diffraction pattern can be obtained on a screen behind the slit. This pattern
consists of intensity maxima and minima, where the exact pattern (angles or g-
values of maxima and minima) depends on the slit width.
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Figure 2. (a) lllustration of the single slit diffraction experiment. Note that
diffraction is mainly observed perpendicular to the thin slit.

(b) The slit example corresponds to a rectangular scattering length density
profile.

1 The word diffraction is mainly used when the experiment is carried out on crystalline solids to
obtain the crystalline structure, while the word scattering is mainly used for the analysis of the
more diffuse scattering from liquids or amorphous objects.



The radiation is scattered by atoms and/or molecules, where different
atoms/molecules have different scattering power. This result in a scattering
contrast between different molecules, like between a polymer and a solvent, or
between domains of different composition like in an emulsion, or in an aerosol.
The scattering pattern, Ix(q), is related to the real space structure through a
Fourier transform. We may illustrate this by the single slit diffraction in Figure 2,
as the calculation here is relatively simple. Consider a long vertical, but narrow,
slit. Because it is long in the vertical direction it scatters mainly in the horizontal
direction (as will be explained below) and we only need to consider one
dimension, the x direction. There is a finite scattering power only inside the slit.
Outside the slit the beam is blocked and scattering power is zero. Denoting the
scattering power by p, its variation in the x-direction, the scattering power
profile p(x), is illustrated in Figure 2 b, where d is the slit width. In this example
the profile is rectangular with p(x)=po inside the slit, and p(x)=0 elsewhere. The
scattered intensity is now given by

o . 2 d/2 i 2
Le(@) = | [, dx 0(x) ei*|" = 3 |[%)" dx el (2)

This Fourier integral has a relatively simple solution. We recall that e® =
cosf +isinf. Since the integration interval is even, the integral over the
imaginary part vanishes, as the sine function is an odd function. Eq. (2) can thus
be written as

a/2 2 . d 2
L.(q) = Q(Z) |f_£/2 dx cos qx| = 49(2) (sm{z; /2}) (3)

This particular scattering pattern has zero intensity at g=2mn/d, 4n/d, 61t/d,... and
intensity maxima at g=0 and at 3nt/d, 5t/d, 7rt/d,..., and where the intensity of
the maxima decays as g2. From, for example, determining the g-value(s) where
the intensity is zero or has a maximum we can obtain the slit width. In practice,
this is done by measuring the corresponding scattering angles and knowing the
wavelength of the light source. We see from Eq. (3) that as § increases, the
positions of the zeros move to lower g-values. In the limit of d — oo all the zeros
move into g=0. This means there is no scattering. Mathematically, this situation
is described by ffooo dx e'%% = §(0), where §(x) is the Dirac delta function.

Scattering only in the forward direction, g=0, is equivalent to a propagating beam
(no scattering), and this is why we essentially do not see any vertical scattering
from the slit when the slit length is large.

There is a fundamental condition that needs to be fulfilled in order to be
able to “see” the shape and size of objects. This condition, which holds both for
“seeing” by imaging or by scattering, is that the wavelength, A, of the radiation
used to “see” with, has to be smaller than the size of the object. This means that,



no matter how much we magnify, in a light microscope we cannot see objects
that are smaller than a micrometer, which is approximately the wavelength of
visible light. In order to “see” smaller things, the wavelength has to be made
shorter. This is essentially no problem. Different sources with shorter
wavelengths are available and there are also suitable detectors of such radiation,
as we cannot use our eyes directly when we depart from the visible part of the
spectrum. UV light is however not suitable for seeing. The reason is that
essentially all matter absorbs rather strongly in UV, making all objects and
matter dark. Decreasing the wavelength further into the so called X-ray regime,
absorption decreases again and matter become increasingly transparent. While
there still remains significant absorption, X-rays with A~0.1 nm (1 A), is
commonly used in scattering experiments.

This fundamental condition can also be illustrated by the help of Eq. (3).
In order to determine the width of the slit we need to measure the g-value of at
least the first intensity minimum occurring at g=2m/d. Since the maximum
scattering angle is 180°, observing the first minimum requires A<2d.

Besides X-rays, one can also produce electron and neutron beams with
short wavelengths, suitable to see small things. For such particle beams the
wavelength is related to the momentum, p=mv, through A=h/p, where m is the
mass, v the velocity and h is Plank’s constant. A beam of charged electrons can be
focused using electromagnetic lenses and are mainly used in electron
microscopes. Neutrons can be produced with a suitable wavelength in reactors,
or by so-called spallation, where protons are accelerated to high velocities and
then impact on heavy atoms. In this spallation event, many neutrons are released.
Neutrons are mainly used for scattering experiments and have some particular
advantages compared to X-rays. For most materials absorption is negligible and
neutrons can therefore penetrate deep into the materials. The scattering
mechanism involves interactions with the atomic nuclei and the scattering
power, and thus the contrast, can be varied by isotopic substitution. In particular
substituting normal hydrogen with deuterium is often used to highlight certain
parts of the molecule. On the other hand, X-rays are scattered by electrons and
the atomic scattering power thus increases with the atomic number. Hydrogen,
which has only one electron, is almost invisible to X-rays while it strongly
scatters neutrons. Neutron scattering is therefore important for studies of
hydrogen storing materials and to refine protein structures when hydrogen
positions are important. Neutrons, being spin=1/2 particles, carry a magnetic
moment and also are scattered by local magnetic fields inside materials which is
used in the studies of high temperature superconductors.

Above we have discussed scattering experiments in general terms. For
what remains we will focus on some particular scattering experiments that are
commonly used to study colloids, gels, polymers, lipids proteins or other soft
matter systems, with characteristic (colloidal) length scales in the range 1 nm -1



um. These are small angle scattering of X-rays or neutrons, and static and
dynamic light scattering.

2. Small angle scattering

Scattering experiments probe the structure on the length scale 2m/q.
Hence, in order to investigate structures on the colloidal length scale we typically
need access to the g-range 0.01 - 10 nm. With X-rays of wavelength 0.1 nm, this
corresponds to small angles, 0.01° - 10°, as obtained using Eq. (1). When we are
only interested in small angles a typical instrument design involves a narrowly
collimated X-ray beam, produce by an X-ray source and giving a spot size of a
fraction of a mm (< 0.5 mm) on a sample typically contained in a glass capillary
of 1 mm in diameter. The scattered intensity is recorded by a stationary, typically
a 2-dimensional area detector (e.g. a ccd camera), placed behind the sample, as
illustrated in Figure 1. On the detector there is also a beamstop that protects the
detector from the intense primary beam, and the whole or at least most of the
system is kept under vacuum to avoid scattering from air that would result in a
background noise. The available g-range depends on the diameter of detector,
the diameter of the beamstop and sample-to-detector distance. Reaching very
low g-values requires a very long sample-to-detector distance (several meters)
and a narrow beam and beamstop, while larger g-values can be obtained by
shortening the sample-to-detector distance. To cover a large g-range it is clearly
advantageous to be able to vary the sample-to-detector distance. Alternatively,
one sometimes uses two detectors simultaneously, one low angle and one wide
angle detector. For a more detailed description see e.g. the review of Narayanan.
[1]

From isotropic solutions or dispersions, the scattering pattern is
circularly symmetric (Figure 3 left). This pattern is then usually radially
averaged to produce the one dimensional scattering pattern I(q) vs. q (Figure 3
right). The intensity is a measure of the energy flux, ie. the number of
photons/particles, passing a unit area perpendicular to the propagation per unit
time. The scattered intensity, Ix, recorded by the detector depends on the
intensity of the primary beam, Iy, on the irradiated sample volume, V, and on the
sample-to-detector distance, I.q, parameters that vary from experiment to
experiment. It is therefore useful to define an absolute intensity scale, where the
experimentally recorded intensity is normalized with respect to these variables.
Isc is proportional to Ip and Vs and because radiation intensities decay as the
inverse square of the distance, the absolute scaled intensity is defined as
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I = IZ;:ISC (4)




In terms of a wave description of the radiation, A(x) = Aycos (x), the intensity is
given by the square of the amplitude, I = |4,|?, which is the reason for the
square in Egs. (2) and (3). To obtain the experimental scattering data on
absolute scale one typically do a calibration with a known scatterer. In the case

of X-rays one often chose pure water.
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Figure 3. (Left) typical two dimensional small angle X-ray scattering pattern
from a dispersion of spherical colloidal particles. (Right) Radially averaged
scattered intensity, I(q), plotted as a function of g.

Turning now to the scattering from colloidal particles, we consider first a
single spherical colloidal particle in vacuum. This can save as an example of
aerosols or the ice-particles of the clouds in the sky, if we neglect the scattering
from the air molecules. The single particle scattering function is given by the
square of a Fourier integral, as in the example of the slit in Egs. (2) and (3). Now,
however we have to integrate over a sphere in three dimensions, with the
position/coordinate vector 7 = (x, y, z). If p(x)=pp inside the sphere while being
zero elsewhere I(q) for the sphere is given by

2
3(sin(qR)—qRcos(qR)
Lie(g)~ @72 (L ticeslud) (5)

where R is the sphere radius and Vi=4mR3/3 is the sphere volume. If the particle
surrounding is not vacuum but for example a solvent then p in Eq. (5) should
replaced by Ap, the difference in p between the particle and the solvent. Strictly,
p has the dimension of length2, e.g. cm. It is often referred to as the scattering



length density, and Ap is the contrast between the particle and the surrounding

solvent. If Ap=0, the particle is “invisible”. X-rays are scattered by individual

electrons and for this type of radiation, p is proportional to the electron density

of the material and X-ray contrast is obtained by differences in electron density.
The q dependence of Eq. (5) is given by the function

3(sin(qR)—qRcos(qR)) 2
P(q) = ( (aR)3 ) e

P(q) is referred to as the (normalized) particle formfactor, and it is this part that
carries the information of the particle shape, here a homogeneous sphere. P(q) is
normalized, so that in the limit in of g=0, P(0)=1. For cylindrical or disc shaped
objects, this function is different. Also, if the particle is not homogeneous, but, for
example, is hollow, consisting of a spherical shell, as for a lipid vesicle, P(q) is
significantly different. A library of form factors can be found in the review by
Pedersen [2].

Pla)

Figure 4. P(q) for homogeneous spheres of radii R=10, 50 and 100 nm, respectively.

P(q) for homogeneous spheres of radii R=10, 50 and 100 nm, respectively,
are presented in Figure 4, in a double logarithmic plot. The normalized P(q)
begins at 1 at g=0 and then decays with increasing g showing also oscillations
due the sine and cosine functions (Eq. (6)). The particular pattern of maxima and



minima reports on the particles shape. The alternating maxima and minima
(zeros) shift to lower q with increasing R.

Typical scattering experiments are performed on solutions or dispersions
with a large number of particles in the scattering volume. When they are dilute,
with average nearest neighbor distance being much longer than R, the total
scattering will just be the sum of the scattering from the different particles. At
higher concentrations, however, the scattered intensity will also depend on the
structure formed by the particles in the solution, a consequence of inter-particle
interactions. In contrast to crystals, however, where the structure is long-range,
the structure in solutions is only short-range. The effect is accounted for by
multiplying with the so-called structure factor, S(q), so that our final expression
for the absolute scaled scattered intensity is

1(q) = "2 %2802P(9)S(q) (7)

where N,/V is the number density of particles, V, is the particle volume, P(q) is
the normalized form factor and S(q) is the structure factor. P(q) and S(q) are
dimensionless and we then see in Eq. (7) that I(q) has the dimension of inverse
length.

In statistical mechanics, the structure of liquids is generally described in
terms of the radial distribution function, g(r), that tells the probability of finding
another particle (or the average particle concentration) at a distance r from a
given test particle. S(q) is the Fourier transform of g(r) and thus carry the same
information about the structure, but in the reciprocal space. From the value of
structure factor in the limit of g=0, we can obtain the osmotic compressibility of
the sample

QD

$(0) = kT (Y, a—)_1 (8)

as a measure of the inter particle interactions. Here, 7 is the osmotic pressure,
and ¢ is the volume fraction of particles.

In Figure 5 we have plotted S(q) as a function of gR for some different
concentrations of spherical particles interacting as hard spheres. For this case
there exists and analytical expression that for example can be found in [3]. At
low concentrations the particles are essentially non-interacting and the solutions
behave as ideal with m=¢ksT/V,, and S(q)=1 for all g-values. With increasing
concentration the excluded volume interactions of the hard spheres become
significant and the solution becomes increasingly structured, as seen by the
oscillations in S(q) and the decreased osmotic compressibility.
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Figure 5. S(q) plotted as a function of qR for some different concentrations of
spherical particles interacting as hard spheres. Dotted line: ¢=0.1, dashed dotted
line: ¢=0.2, dashed line: ¢=0.3, and solid line: ¢=0.4. The correlation peak moves
to higher g with increasing concentration as the average separation between
particles decreases.

In Figures 6-8 we have plotted separately P(q) (upper left), S(q) (upper
right) and I(q) (bottom left (linear scale) and right (log-log scale)) for a hard
sphere system with volume fractions ¢=0.01, 0.10 and 0.40, respectively. In the
bottom right figure, I(g) (solid blue line) is compared with P(g) (broken green
line). As can be seen, there is an increased influence of the structure factor on the
scattering pattern as concentration increases. At the lowest concentration
¢=0.01 (Figure 6) S(q)~1 and does not influence the scattering significantly.
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Figure 6. P(q) (upper left), S(q) (upper right) and I(q) for a dispersion of
spherical homogeneous hard sphere particles of R=10 nm and ¢=0.01.

10° b !
0.9
0.8
= =
o [0}
0.7
0.6
0.5
04 o1 02 03 04
aa
400 10°
350 { | e
10°
300
250 | . \
‘£ 200 e |
2 2
= = 2
= 150 Z 4
100
10
50
0 10°
] 0.2 0.3 04 10° 107 o 1o
gt it

Figure 7. P(q) (upper left), S(q) (upper right) and I(q) for a dispersion of
spherical homogeneous hard sphere particles of R=10 nm and ¢=0.10.
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Figure 8. P(q) (upper left), S(q) (upper right) and I(q) for a dispersion of
spherical homogeneous hard sphere particles of R=10 nm and ¢=0.40.
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Figure 9. Comparison of P(q) for monodiperse spheres with R=10 nm (red
dashed line) with the average P(q) for polydisperse spheres with <R>=10 nm
and relative standard deviation o/<R>=0.10 (blue solid line). Polydispersity
removes the formfactor minima in the scattering pattern.
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Up to now we have only considered monodisperse particles, i.e. where all
particles have exactly the same size. This is seldom the case in reality. Most often
there is a mixture of sizes, with a size distribution that for example can be
Gaussian N, (R)/V ~exp{(R — (R))?/20?}, where Ny(R)/V is the concentration of
particles with radius R, and the distribution is characterized by a mean value <R>
and a standard deviation, o. The main effect of the polydispersity is that the
formfactor minima in the scattering patters become less distinct as the different
particle sizes have their minima at different g values. In Figure 9 we compare
P(q) from monodisperse spheres of with and average P(q) from a system with a
Gaussian distribution of sizes with a relative standard deviationo/<R>=0.1. With
this polydispersity only the first two minima are clearly visible.

102

1.1%
11%
22 %

100 L

Y)

10-1 L

Intensity(cm

10-2 L

107

10-4 L

107 L L L 4
1073 1072 107 10°

Figure 10. SAXS data from aqueous solutions of microemulsion oil-droplets with radius
R=~8 nm. Data from reference [4]. The oil (decane) droplets are covered and stabilized by
a layer of the nonionic surfactant Ci2Es, and interact to a good approximation as hard
spheres. Three different concentrations are shown, ¢=0.011, 0.11 and 0.22, respectively.

In Figure 10 we show the scattered intensity from a real experimental

system. The data were recorded in SAXS experiments and the system is a
microemulsion where spherical droplets of decane, covered by a stabilizing layer

13



of the nonionic surfactant Ci2Es (penta ethyleneglycol dodecyl ether), are
solubilized in water. The mean radius of these microemulsion droplets is 8 nm
and 0/<R>x=0.15.[4] The scattering from three different concentrations, ¢=0.011,
0.11 and 0.22, respectively, are shown. The scattered intensity at higher g, where
S(q)=1 for all concentrations, is proportional to ¢. At lower g, the structure factor
reduce the scattered intensity for higher concentrations. Below we will also
discuss light scattering from the same microemulsion system.

Finally in this section we note that Eq. (7) also states that there is very
strong dependence of the scattered intensity on the particle size. For a given
volume fraction of particles, ¢=N,V,/V, the scattered intensity is proportional to
the particle volume which, in the case of homogeneous spheres, means a
proportionality to R3. Air and water molecules scatter the sunlight only little and
the main effect is the blue color of the sky. When water molecules in humid air
condense to form droplets and ice particles, they scatter much more, and the
resulting clouds are clearly visible. The blue color of the sky is a consequence of
the particularly strong wave length dependence of scattering of visible light, as
will be discussed further in the next section.

3. Static Light Scattering.

With visible light we have access to small g-values. Mostly, the
wavelength of the light (ca. 500 nm) is longer than the size of the particles we are
studying. In this case, we will not see any formfactor minima within the
accessible g-range (for a homogeneous sphere, the first formfactor minimum
occurs at g=4.5/R). Rather, we only see the low q part of the product P(q)S(q).
With light scattering experiments we can make accurate extrapolations to g=0 to
determine properties like V, (the molecular weight of polymers is often
determined this way) and (0r/d¢) ™1, but we are typically unable to determine
the particle shape. While we will not detect any formfactor minima, the
monotonic variation (decay) of I(q) with g can still be evaluated, to obtain the
radius of gyration, Ry, from the leading term in the series expansion of P(q)

P@=1-"1 . (9)

For a homogeneous sphere, Ryj=(3/5)/2R.

In light scattering experiments one often explores a wide range of
scattering angles (15° - 165°). A schematic description of a light scattering setup
is shown in Figure 11. A laser beam is focused on the sample and the scattered
light is collected by, for example, a photo diode placed on a movable arm
(goniometer), to detect the scattering at different angles. The laser wavelength
(e.g. 633 nm for a Helium-Neon laser) is generally expressed as the wavelength
in vacuum. In the sample, this wavelength becomes 4/n, where n is the refractive
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index of the solution, and the expression for the g-vector is, for light scattering,

generally written
q= 4% sing (10)

With a He-Ne laser the accessible g-range becomes ca. 0.0035 - 0.026 nm in
water (n=1.33). In light scattering, the absolute scale scattered intensity is
generally referred to as the excess Rayleigh ratio, 4R(q). The data are converted
into absolute intensities using

2
Al(q)
AR(@) = 1L () Ry (@) (11)

Here, Alref(q) is the excess scattered intensity of the sample, where the scattering
from the solvent and sample tube has been subtracted, and n its refractive index.
Ire(q) is the scattered intensity of the reference solvent and nys its refractive
index. Rrer is the Rayleigh ratio of the reference solvent. A common solvent for
absolute scale calibration of the scattered intensity is toluene.

Schematic light scattering setup

Thermostat with
refractive index
matched liquid
(e.g. toluene)

Primary beam
Laser

beam
blocker

R N ,/ Detectorona
\ s .
N Goniometer.
. . Connected also
S e to a correlator.

S, -

Figure 11. Schematic outline of a typical goniometer light scattering instrument. A laser
beam of 1-2 mm width shines on a sample inserted in a liquid (often toluene or
decaline) having a refractive index very close to that of the sample container (glass) to
minimize reflections etc. The index matched liquid is also used as a thermostat. The
scattered light is recoded by a detector (e.g. photo diode), fixed on a goniometer arm.
For dynamic light scattering experiments, intensity correlations are analyzed in a
correlator.

15



The contrast comes from the difference in the refractive index between
particle and solvent. In light scattering this is quantified in terms of the so-called
refractive index increment, dn/d¢ (more commonly expressed as dn/dc, where ¢
is the molar concentration).

The light scattering power of molecules depends on their polarizability,
which is linked to the refractive index. The scattered light intensity has a very
strong wavelength dependence, I~A4. This is the reason why the sky is blue (on
a sunny day). When we look at the sky, we detect photons from the white light of
the sun that have been scattered by air molecules in the atmosphere. Blue
photons (A=400 nm) are scattered more frequently than other visible
wavelengths and this is why the sky is blue. This is also why the sun looks yellow.
Blue photons have preferentially been depleted from the originally white light
and the result is that the transmitted sunlight is yellow. At sunset, the sun light
takes a longer path through the atmosphere. As a consequence there is more
scattering. Often, we then find that the sun looks beautifully red. This is because
so much of the other colors have been scattered, that only the longest
wavelength (800 nm) has a significant transmission. This is helped if the
atmosphere also is polluted by soot or other particles.

1.5

AR(0) / m™

0.5

Figure 12. The excess Rayleigh ratio extrapolated to g=0, plotted as a function of the
volume fraction for the same water-Ciz2Es-decane microemulsion as in Figure 10. Data
from reference [5] The solid line is the theoretical prediction for hard spheres.
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The excess Rayleigh ratio can be expresses as

am?n? (dn

AR(q) = ¢ 278 (Y 1, P(@)S (@) (12)

where ng is the refractive index of the solvent and n is the refractive index of the
solution. Extrapolating data to g=0, where P(q)=1, we can, determine V, if the
solution is dilute so that also S(q)=1. As mentioned above, this is commonly done
to determine the molecular weight of polymers. If V},, on the other hand, is
known from other measurements, AR(0) determined as a function of ¢ reports
on interparticle interactions via the concentration dependence of S(0). Figure 12
shows the variation of AR(0) with ¢ in a microemulsion composed of spherical
oil droplets (R= 8 nm) in water, covered and stabilized by a layer of nonionic
surfactant. [5] The system is in fact the same as in the SAXS study discussed
above (Figure 10). The solid line is the prediction for hard spheres, given by the
Carnahan-Starling equation. [6] At lower concentrations the intensity increases
with concentration because of the increased number of particles. At higher
concentrations, however, the scattered intensity decreases because of the
repulsive interactions. This has a very important consequence. Our eye lenses
are composed of concentrated (¢=0.3) protein solutions. For obvious reasons
they need to be transparent, with only very low scattering of light. This is
secured by the strong, here electrostatic, repulsions between the protein
molecules. In the cataract disease, the eye lens has turned turbid with significant
light scattering. This is because for some of the proteins interactions have shifted
from net repulsive to attractive and the proteins have aggregated into larger
objects. [7]

4. Dynamic light scattering.

The scattered intensity measured in static light scattering experiments
corresponds to a time average, <I(q)>. The fluctuations of the intensity arise
because the relative positions of all the particles are constantly changing as they
undergo Brownian motion. The static structure factor, discussed above, is
therefore strictly a time average. Fluctuations in the intensity may also arise
from particle shape fluctuations, i.e. fluctuations in P(q), but this can often be
neglected, and will not be discussed further here. By analyzing the rate of
intensity fluctuations we get information about the rate of particle motions. In a
dynamic light scattering experiment the autocorrelation function of the intensity
fluctuations is recorded. This is done recording the intensity at different times,
multiply those values with the value at t=0, repeat this operations many times
and finally take the statistical average of the products to form the
autocorrelation function, G(t) = (I(0)I(t)). Here, ( ) symbolizes that it is an
average. This correlation function has the value (I?) at t=0 and decays to (I)? at
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long times when I(0) and I(t) has become uncorrelated. Often one considers the
modified correlation function gz(t)-1, where gz(t)=G(t)/{I)?>. For the case of
monodisperse particles this is an exponential

go(t) — 1 = Ae~?Tt (13)
where A is an instrumental constant the relaxation rate I' is given by
I'=D.q? (14)

The q? dependence is indicative of diffusive motion and D. is the collective
diffusion coefficient. D depends on particle size, but also on interactions, direct
as well as hydrodynamic. In dilute solutions where interactions can be neglected,
we can obtain the hydrodynamic radius, Ry, from D, that here equals the Stokes-
Einstein diffusion coefficient

_ kgT
67T7]RH

(15)

0

Here, kg is Boltzmann’s constant, T the absolute temperature and 7 the solvent
viscosity. For hard sphere systems, Dy has only a weak concentration
dependence.

05 | .

Figure 13. The relative collective diffusion coefficient, D./Dy, plotted as a
function of the volume fraction for the same water-Ci2Es-decane microemulsion
as in Figures 10 and 12. Data from reference [5]. Dy=2.0 10-11 m2s-1, The solid line
is the theoretical prediction for hard spheres.
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In Figure 13 we show the variation of D, with concentration in the same
nonionic microemulsion system as in the Figures 10 and 12.[5] The solid line is a
theoretical prediction [8] for hard spheres, D./D, = 1 + 1.45¢. From the value
of D. extrapolated to ¢=0 (D¢=2.0 10-11 m2s-1), a hydrodynamic radius of ca. 90
nm is obtained, using Eq. (15).
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