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1 Introduction

The neutron is a spin 1/2 sub-atomic particle with mass equivalent to 1839 electrons (1.674928 x 1027
kg), a magnetic moment of -1.9130427 p,, (-9.6491783x10727JT~!) and a lifetime of 15 minutes
(885.9 s).

Quantum mechanics tells us that, whilst it is certainly particulate, the neutron also has a wave
nature and as such can display the gamut of wave behaviours including reflection, refraction and
diffraction.

This introduction covers briefly the theory of neutron scattering and that of one technique that
make use of the wave properties of neutrons to probe the structure of materials, namely small angle
neutron scattering (diffraction).

Since this introduction is exactly that, the reader is encouraged to look to the extensive literature
on the subject and a recommended reading list is provided at the end. Much of the material
presented here has been adapted from those references.

2 Neutron Scattering

2.1 Neutron-nucleus interaction

The scattering of neutrons occurs in two ways, either through interaction with the nucleus (nuclear
scattering) or through interaction of unpaired electrons (and hence the resultant magnetic moment)
with the magnetic moment of the neutron (magnetic scattering). It is the former of these that this
introduction will address.

Let us consider the elastic scattering of a beam of neutrons from a single nucleus. In this case
we treat the nucleus as being rigidly fixed at the origin of coordinates and there is no exchange of
energy (Figure (1)). The scattering will depend upon the interaction potential V(r) between the
neutron and the nucleus, separated by r. This potential is very short range and falls rapidly to
zero at a distance of the order of 107'% m. This is a much shorter distance than the wavelength
of the neutrons which is of the order of 1A (107'° m) and as a result the nucleus acts as a point
scatterer.

We can represent the beam of neutrons by a plane wave with wavefunction
\I/i = eika: (1)

where x is the distance from the nucleus in the propagation direction and k = 27/ is the wave-
number. The scattered wave will then be spherically symmetrical (as a result of the nucleus being
a point scatterer) with wavefunction
U, = —éeikr (2)
r
where b is the nuclear scattering length of the nucleus and represents the interaction of the neutron
with the nucleus. The minus sign is arbitrary but results in most nuclei having positive scattering
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Figure 1: Elastic neutron scattering from a fixed nucleus (after Pynn, 1990)

lengths. The scattering length is a complex number, but the imaginary component only becomes
important for nuclei that have a high absorption coefficient (such as boron and cadmium) and it
can otherwise be treated as a real quantity.

The scattering length of nuclei varies randomly across the periodic table. It also varies between
isotopes of the same element. A useful example of this is 'H and 2H ( hydrogen and deuterium
respectively with the latter often labeled D). Hydrogen has a coherent (see later section) scattering
length of —3.74 x 107°A and deuterium 6.67 x 10~°A. Thus the scattering length of a molecule can
be varied by replacing hydrogen with deuterium and potentially be made to match that of some
other component in the system. This technique of contrast variation is one of the key advantages
of neutron scattering over x-rays and light.

As mentioned above, the neutron can also interact with the magnetic moment of an atom. This
magnetic interaction has a separate magnetic scattering length that is of the same order of magni-
tude, but independent from, the nuclear scattering length. Thus, for example, one can use contrast
variation to remove the nuclear component of the scattering and leave only the magnetic. The
magnetic interaction is spin-dependent, so it is also possible to extract information about the mag-
netization through the use of polarized neutrons. These advanced uses are beyond the scope of this
introduction, but more information can be found in the reference material listed at the end.

Having treated the case of a single nucleus, if we now consider a three-dimensional assembly of
nuclei whilst maintaining the assumption of elastic scattering the resultant scattered wave will
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where q = k — k’ and is known as the scattering vector with k and k’ being the wavevectors of the
incoming and scattered neutrons respectively.

2.2 Scattering Cross Section

The scattering cross section is a measure of how “big” the nucleus appears to the neutron and thus
how strongly neutrons will be scattered from it.

Scattering direction

/6’4)

Incident Neutrons

z-axis

Figure 2: The geometry of a scattering experiment (after Squires)

Imagine a neutron scattering experiment where a beam of neutrons of a given energy E is incident
on a general collection of atoms (your sample - it could be a crystal, a solution of polymers, a piece
of rock, etc) (Figure 2). If we again assume elastic scattering (such that the energy of the neutrons
does not change) we can set up a neutron detector to simply count all the neutrons scattered into
the solid angle df? in the direction 6, ¢. The differential cross section is defined by

dj _ number of neutrons scattered per second into df? in direction 6, ¢ (@)
dQ ddQ

where ® is the number of incident neutrons per unit area per second, referred to as the incident
flux. The name “cross section” suggests that this represents an area and indeed, we can see that
the dimensions of flux are [area™! time~!] and those of the numerator in equation (4) are [time™!]
resulting in dimensions of [area] for the cross section.



The total scattering cross section is defined by the equation

total number of neutrons scattered by second

and is related to the differential scattering cross section by

oy = / 9 10 (6)

The cross section is the quantity that is actually measured in a scattering experiment and the basic
problem is to derive theoretical expressions that describe it for given systems of scatterers. Exper-
imentally the cross sections are usually quoted per atom or per molecule and thus the definitions
above are then divided by the number of atoms or molecules in the scattering system.

We can calculate the cross section do/dS) for scattering from a single fixed nucleus using the
expressions given above. Denoting the velocity of the neutrons as v and again treating elastic
scattering, the number of scattered neutrons passing through an area dS per second is

b2
vdS|ys|* = vdS—5 = vb?dS (7)

The incident neutron flux is
@ = vlyl* = v (8)
From equation (4)
d b2dQ)
o= g =Y (9)
s DdN
and then integrating over all space (47 steradians) we obtain

Otot — 47Tb2 (10)

We can perform a similar calculation for the assembly of nuclei whose wavefunction was given in
equation (3) above and obtain the differential cross section

Zb

which we can now see is a function of the scattering vector, q.

2

1
=N (11)

2.3 Coherent and Incoherent Cross Sections

The above discussion applies to the case where there is only one isotope of one element present
(specifically an element with zero nuclear spin), however practically all real systems will have a
distribution of both elements and isotopes of those elements. The result of this distribution is that
the total cross section is, in fact, a sum of two components a coherent part and an incoherent part

Otot = Ocoh + Tincoh (12)



The coherent scattering cross section, og.p, represents scattering that can produce interference and
thus provides structural information. Conversely, the incoherent cross section does not contain
structural information. The two are related to the mean and variance of the scattering length such
that

Ocon, = 41 < b >2 and oipeon = 4m(< b2 > — < b >?) (13)

The total scattering cross section is then
o, = 4w < b* > (14)
We previously learned that the scattering length b is, in fact, a complex number. If we take

account of the imaginary part, which represents the absorption, then the total scattering cross
section becomes

Otot = 05 + 04 (15)

Otot = Ocoh + Tincoh + 0qa (16)

where o, is the absorption cross section.

3 Small Angle Neutron Scattering

The discussion above focussed on atomic properties, but there are many problems where the length
scales in question are much larger than atomic dimensions and it is easier to think in terms of
material properties. In order to do this we define a quantity called the scattering length density

p(r) = bio(r —ry) (17)

or

p== (18)

where p is the scattering length density, b; is the scattering length of the relevant atom and V is
the volume containing the n atoms.

This is a much more useful way to think about materials science problems, but can we really replace
the atomic properties in this way? Consider the case of water. If we calculate the scattering length
density as a function of radius from a given oxygen atom (Figure (3)) we can see that beyond a
certain radius 7* the scattering length density becomes constant and so above ¢ = 1/7* the details
of the atomic structure are lost and the scattering length density is a valid description.

So, we can now make the replacement of the sum in

Zb

2

1
-~ (19)
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Figure 3: Scattering length density of water as a function of distance from a given oxygen atom
(after Kline)

by the integral of the scattering length density distribution across the whole sample and normalize

by the sample volume
/ p(r)e'dTdr
\%

This result is known as the “Rayleigh-Gans Equation” and shows us that small angle scattering
arises as a result of inhomogeneities in scattering length density (p(r)). ¥ = o/V is known as
the macroscopic cross section. The integral term is the Fourier transform of the scattering length
density distribution and the differential cross section is proportional to the square of its amplitude.
This latter fact means that all phase information is lost and we cannot simply perform the inverse
Fourier transform to get from the macroscopic cross section back to the scattering length density
distribution.

2
dX _NdJ 1

E(Q) = Vm(‘l) = % (20)

As discussed previously, the differential cross section do/dS) is the directly measured quantity in
a scattering experiment. In the case of small angle scattering the results are usually normalized
by the sample volume to obtain the result on an “absolute” scale as this permits straightforward
comparison of scattering from different samples. Thus the differential macroscopic cross section is
used as defined by the Rayleigh-Gans equation above.

As with the atomic cross section, the macroscopic cross section has three components

@( )_ dzcoh( ) dzznc dzabs
VT a0 YT aa T an

(21)

Information about the distribution of matter in the sample is contained in the coherent component,
whilst the incoherent component is not g-dependent and contributes only to the noise level. The
absorption component is usually small and simply reduces the overall signal.

Whilst different types of system have different natural bases for the distribution of scattering length
density, all are fundamentally equivalent - we just use different ways to describe them. In the case
of particulate systems where we have “countable” units that make up the scattering, we can think



about the spatial distribution of those units such that
2 N N
JRECLEIEE W (22)
(]

In polymers the units might be the monomers in the chain, in proteins we might consider polypep-
tide subunits and in a general particulate system the individual particles (be they molecules or oil
droplets) might be used.

In non-particulate systems (for example metal alloys or bicontinuous microemulsions) a statistical
description may be appropriate whereby p(r) is described by a correlation function v(r).

3.1 General Two Phase System

Figure 4: A system containing two phases with scattering length densities p; and po

So what is the practical result of the above discussion? Let us imagine a general two phase system
such as that presented in figure 4. It consists of two incompressible phases of different scattering
length densities p; and p2. Thus

V=Vi+V (23)
pry =P N (24)
p2 in Vs

Taking the Rayleigh-Gans equation (equation (20)) and breaking the total volume into two sub
volumes

dx 1 / qr / o

—(q) = = p1€' 9 dry + poe' Tt dry 25

=y i (25)

2

ds 1 / 4 . .

—(q) = — p1e'Yrtdry + po /e’q'rdr—/ e drq 26

o=/ { [ i (26)
(27)



So at non-zero q values
2
dx 1

dﬁ(q) = V(Pl - 02)2 (28)

/ ezq-rdrl
Vi

where the difference in scattering length densities encapsulates both material properties (density,
composition) and radiation properties (scattering lengths), whilst the integral term describes the
spatial arrangement of the material.

Figure 5: Two systems where the structure is the same but the scattering length densities are
reversed

The above equation leads to “Babinet’s Principle” that two structures, such as those shown in
figure 5, which are identical other than for the interchange of their scattering length densities
give the same coherent scattering (the incoherent term may be different). This is a result of the
loss of phase information mentioned previously - there is no way (from a single measurement) to
determine if p; is greater than ps or vice versa. Thus it is important when designing small angle
scattering experiments to consider the appropriate use of contrast variation - usually by substitution
of hydrogen for deuterium - in order to be able to solve the structure.

4 Analysis of Small Angle Scattering Data

Once the various instrumental effects have been removed and the scattering is presented as d¥/d€2(q)
it is then necessary to perform some sort of analysis to extract useful information. Unless there
is some specific orientation of scattering objects within the sample, the scattering can be averaged
to give the macroscopic cross section as a function of the magnitude of q. It is this that is most
commonly presented and is known as the 7-D small angle scattering pattern.

There are essentially two classes of analysis: model-dependent and model-independent. The former
consists of building a mathematical model of the scattering length density distribution, whilst the
latter consist of direct manipulations of the scattering data to yield useful information.



4.1 Model Independent Analysis
4.1.1 The Scattering Invariant

Porod showed that the total small angle scattering from a sample is a constant (i.e. invariant)
irrespective of the way the sample density is distributed (figure 6).

Figure 6: Two systems where the contrast and volume fraction are the same, but the distribution
of matter is different. Both are 10% black and 90% white.

Integrate the differential cross section with respect to q

dX
Q= / 70 (@da (29)
= (2m)°(p(r) - p)? (30)
and for an incompressible two-phase system
L= =200 - 02— p1)? ()

Thus, in theory, this analysis allows for the calculation of the volume fraction of each component
in a two-phase system given the contrast, or the contrast given the volume fractions. However in
practice it is difficult to measure the scattering in a wide enough Q range to be able to calculate

Q.

4.1.2 Porod Scattering

Also due to Porod is a law for scattering at high values of Q (Q > 1/D, where D is the size of the
scattering object), if there are sharp boundaries between the phases of the system. The law states
that at large Q

I(g) oc g™ (32)
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and thus

o m (@) ah) =3 (33)

where Q* is the scattering invariant mentioned previously and S/V is the specific surface of the
sample. If we consider the systems shown in figure 6 we can see that the specific surface of the

left hand sample will be larger than that of the right hand one, but they have the same scattering
invariant.

4.1.3 Guinier Analysis

Where the Porod approximation considers the high-Q limit of scattering, the low Q limit can be
described using an approximation due to Guinier. The Guinier approzimation is formulated as

_ (QRg)?
3

1(Q) = 1(0)e

m(1(Q)) = In(1(0)) ~ "2¢? (35)

(34)

and thus the radius of gyration of the scattering object, Ry, can be extracted from the slope of a
plot of In(I(Q)) vs @2, bearing in mind that the validity of the approximation is limited to values
of QRy < 1. The radius of gyration of a sphere is given by

R = gR2 (36)

and the equations for other bodies are given in Appendix A.
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4.2 Model Dependent Analysis

As we saw in the discussion of Babinet’s principle, the macroscopic scattering cross section for a
two phase system can be divided into a contrast factor, which describes the difference in scattering
length density between the phases, and an integral term, which describes the spatial arrangement
of the material in the phases. This latter term is the function that must be modelled.

In many cases it is possible to describe the distribution of material in terms of a form factor, P(q),
that represents the interference of neutron scattered from different parts of the same object, and a
structure factor, S(q), that represents the interference of neutrons scattered from different objects.

@) = o~ mPVEP@)S(a) (37)

If the system of scatterers has no interparticle correlation (e.g. it is a dilute solution) then S(q) = 1.

The form factor describes the size and shape of the scattering objects and analytical expressions
have been derived for many common shapes such as spheres and cylinders (see below). More
complex objects can usually be deduced or constructed from these.

In the case of an isotropic solution the structure factor is given by
0o .
S(q) =1+ 47N, / lg(r) — 11500 2, (38)
0 qr

where ¢(r) is the pair correlation function for the scattering objects and In g(r) is directly related
to the potential energy function that describes the interparticle interaction. In theory g(r) can be
obtained from Fourier inversion of S(q), however in practice one of the approximate forms of S(q)
that have been developed for specific systems is used in model fitting.

12



4.2.1 The Form Factor for Spheres
For a sphere of radius r
2
3(sin(gr) — gr cos(qr))
P(Q) = 3
(qr)

Guinier region |

1

0.1

0.001
q (A1)

Figure 7: Form Factor spheres of radius 30A. R, = 23A
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4.2.2 The Form Factor for Cylinders

For a cylinder of radius r and length L = 2H

x/
P = [ lacsinade

Iy cosr J1(grsin «)
f(q,a) - JO(qH ) (qrsina)
jo(x) = sin(z)/x

2
Veyr = mr°L

where Ji(x) is the first order Bessel function. Here « is defined as the angle between the cylinder
axis and the scattering vector, q. The integral over « averages the form factor over all possible
orientations of the cylinder with respect to q.

1

10
10°
10
107
&
[a

Guinier region

Figure 8: Form Factor for cylinders of radius 30A and length 400A. R, = 117A
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4.3 Contrast Variation

In order to make the analysis of complex structures more tractable, the ability to vary the scattering
length density through hydrogen-deuterium exchange is a key advantage of neutron scattering over
other scattering techniques (x-rays, light).

Figure 9 shows an example of a core-shell type particle where contrast variation can be used to
highlight various parts of the structure. The resulting scattering curves can be fitted simultaneously
to the same model varying only the scattering length densities between data sets.

Natural contrast r solvent =r core r solvent = r shell
(shell visible) (core visible)

Figure 9: The effect of contrast variation on the measurable structure of a core-shell particle

4.4 Polydispersity

In real systems there is often a distribution of sizes of scattering object which has the effect of
damping the high q oscillations or “smearing” the scattering curve (Figure 10). This effect can be
calculated by performing an integral over the appropriate size distribution. Models that already
have multiple integrals (e.g. a cylinder form factor) can become computationally intense when a
size distribution is added, particularly if the particle is anisotropically shaped and polydispersity
of multiple dimensions (e.g. radius and length) is required.

The resolution function of the instrument, which depends on geometry and wavelength distribution
for a pinhole SANS instrument, has a similar effect on the scattering curve and thus correct account
must be made for those smearing effects if one is to extract the size distribution from a fit.

15
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Figure 10: Form factor of spheres of radius 30A with a distribution of radii. The polydispersities
are p = 0/Rmean quoted as a percentage. Size distributions for the non-zero polydispersites are
inset.

5 Recommended Reading

5.1 Neutron Scattering

“Neutron Scattering - A Primer” by Roger Pynn (LAUR-95-3840 Los Alamos Science, Vol. 19,
1990.)
previously at http://www.mrl.ucsb.edu/"pynn/primer.pdf now available via the NIST Center for N

“Introduction to Thermal Neutron Scattering” by G. L. Squires (Cambridge University Press, 1978)
This is an excellent book if you want the nitty-gritty of scattering theory. It is now available from
Dover Publications and at the time of writing is only $12 from Amazon.com

5.2 Small Angle Neutron Scattering

“The SANS Toolbox” by Boualem Hammouda - available as a PDF from the NCNR website.

http://www.ncnr.nist.gov/staff/hammouda/the_SANS_toolbox.pdf
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The NCNR SANS website contains tutorials and tools relating to SANS as well as information
about the NCNR SANS instruments.

http://www.ncnr.nist.gov/programs/sans/

6 Acknowledgements

This introduction is an amalgam of material from a number of sources. The section on neutron
scattering was based heavily on sections in Squires and Bacon and those two books (Squires in
particular) will reward the dedicated reader. The section on small angle neutron scattering was
based on a set of powerpoint slides presented by Steven Kline of the NIST Center for Neutron
Research at their summer schools.
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A Radius of Gyration of Some Homogeneous Bodies

Sphere of Radius R

3
2 _ 2 p2
Ry = gR
Spherical shell with radii R; > R
o SRR
9 5R}— R}
Ellipse with semiaxes a and b
5 a4 b?
R, = 7
Ellipsoid with semiaxes a, b, ¢
2 a2 + b2 + 62
Ry 3
Prism with edges A, B, C
R A%+ B? + C?
g 12
Cylinder with radius R and length 1
R2 — R72 + ﬁ
92 12

Elliptical cylinder with semiaxes a and b and height h

2 2 2

+b  h
R:="1 +—
4 12

Hollow circular cylinder with radii R; > R2 and height h

p_BitR B
g 2 12
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