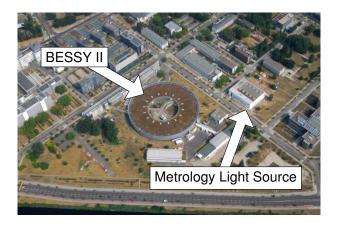




# Status of the Metrology Light Source

ESLS XXIV - Lund, Sweden


Tobias Tydecks et al.

Helmholtz-Zentrum Berlin (HZB)

tobias.tydecks@helmholtz-berlin.de

November 29, 2016

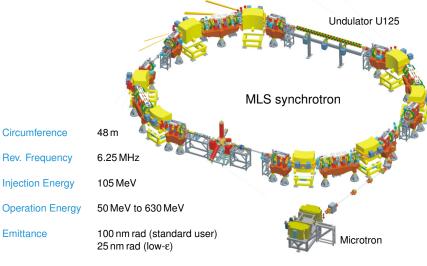
### The Metrology Light Source (MLS)



#### Status MLS

The Metrology Light Source Positive / Negative  $\alpha$  Lifetime in low- $\epsilon$  operation mode

Status Robinson Wiggler Project


#### Status MLS

The Metrology Light Source Positive / Negative  $\alpha$  Lifetime in low- $\epsilon$  operation mode

Status Robinson Wiggler Project

### The Metrology Light Source (MLS)





Typical lifetimes for diff. operation modes at 150 mA 6 h (standard user)

 $2 h (low-\epsilon)$  $10 h (low-\alpha)$ 

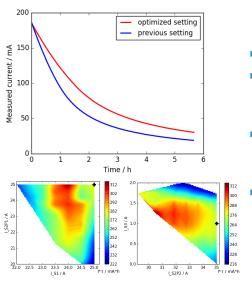
### Operation modes


- Operation completely automated
- selection of desired user mode by pushing one button
- energy ramp and state transitions current conserving



- Standard user mode
  55 % User Time
- Special modes~ 45 % User Time
  - Iow-ε
  - low-α
  - neg.-α
  - low currents (countable no. of e<sup>-</sup>)
  - low energy (down to 50 MeV)
  - Island buckets
  - single bunch / flexible bunch pattern

## Positive / Negative $\alpha$





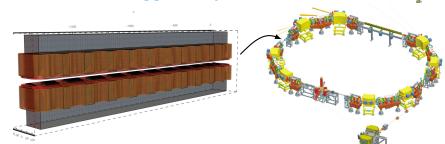

- MLS is a ramped machine, therefore new injection state developed
- now high currents at neg. low-α and at similar optics as pos. low-α available
- no major difference in spectra observed
- But: detailed investigation of performance shows a clear preference for using neg. α optics:
  - higher bursting threshold
  - enhanced stability of THz-power (non-bursting)

### Lifetime in low-ε operation mode



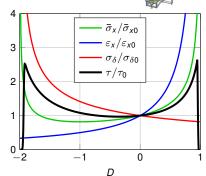


- emittance  $\varepsilon_x = 25 \, \mathrm{nm} \, \mathrm{rad}$
- improvement of lifetime in low-ε mode by 30 % achieved by in situ sextupole scan
- further improvement with in situ particle swarm algorithm
  → see talk by Ji Li tomorrow
  Wed 12:15 12:35



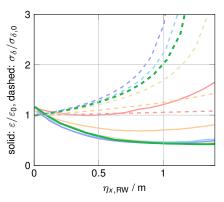

#### Status MLS

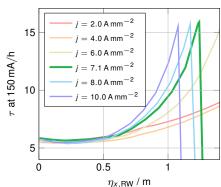
The Metrology Light Source Positive / Negative  $\alpha$  Lifetime in low- $\epsilon$  operation mode


#### Status Robinson Wiggler Project

## Status Robinson Wiggler Project @ MLS




$$au_t \propto \sigma_x \sigma_s \quad \sigma_x = \sqrt{\varepsilon_x \beta_x + \sigma_\delta^2 \eta_x^2} \quad \sigma_s \propto \sigma_\delta$$


- transfer damping between hor. and long. plane
- ightharpoonup keep  $\bar{\sigma}_{x}=$  const.
- $\triangleright$  increase  $\sigma_s$
- ▶ improve lifetime by more than 100 %



## Status Robinson Wiggler Project @ MLS







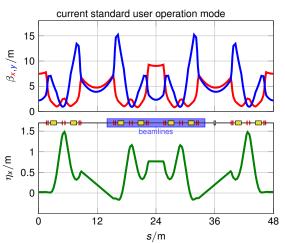
- ightharpoonup possible lifetime improvement from 6 h to  $\sim$  15 h @ 150 mA
- ▶ increase of integrated photon flux for 6 h user run: 30 %
- increased temporal stability
- project funded, technical specifications in their final stages



#### Status MLS

The Metrology Light Source Positive / Negative  $\alpha$  Lifetime in low- $\epsilon$  operation mode

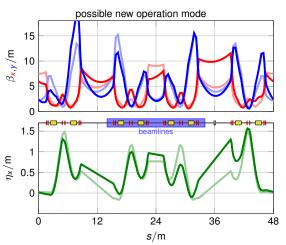
Status Robinson Wiggler Project


## Genetic algorithm for optimization



- individually powered quadrupoles at the MLS
- ⇒ 24 degrees of freedom
- ▶ scanning no longer efficient ⇒ roll the dice
- optimize for
  - 1. source size and divergence at beamlines
  - reasonable Touschek lifetime
  - small dispersion function at the septum magnet (also lifetime related)

## Optical functions - SU vs. New Optics






- quadrupoles no longer grouped into equally powered "families"
- breaking of symmetry allows optimization of source size at beamlines

### Genetic optimized optics





- quadrupoles no longer grouped into equally powered "families"
- breaking of symmetry allows optimization of source size at beamlines

### Genetic optimized optics



- The reduction in source size and divergence is achieved by
  - reducing the horizontal emittance from  $\varepsilon_{x,SU} = 100$  nm rad to  $\varepsilon_{x,NO} = 65$  nm rad,
  - reducing the value of the horizontal  $\beta$ -function at the beamlines,
  - reducing the value of the horizontal dispersion at the beamlines,
  - reducing the gradients of the optical functions at the beamlines.
- reasonable Touschek lifetime is achieved by enlarging the optical function where no beamline is located while keeping dispersion at the septum small

### Genetic optimized optics



| Beamline | $\Delta \sigma_{x}/\%$ | $\sigma_{x}^{\prime}/\%$ | $\sigma_{\rm V}/\%$ | $\sigma_{\rm v}^{\prime}/\%$ |
|----------|------------------------|--------------------------|---------------------|------------------------------|
| IDB      | <del>-7</del>          | _ <del></del>            | -28                 |                              |
| QPD01    | -39                    | 4                        | -29                 | <b>-29</b>                   |
| QNIM     | <b>-41</b>             | -6                       | -29                 | <b>-29</b>                   |
| EUV      | -24                    | -20                      | -13                 | -24                          |
| VUV      | -32                    | 14                       | -14                 | -2                           |
| THz      | -35                    | -1                       | -16                 | <b>-37</b>                   |
| IR       | <b>-41</b>             | -5                       | -16                 | <b>-29</b>                   |
| QPD00    | -34                    | 2                        | -17                 | -29                          |

- optics ramp table set up
- further tests after shut down

### Summary



- MLS is running well and users are happy
- continuing development of existing and new operation modes
- ongoing projects:
  - Robinson Wiggler for improving the lifetime and further enhancing the flexibility of the MLS
  - development of new optics optimized for user community by breaking symmetry

Thank you for your attention...