

ANKA, Status and upgrade proposals

23rd ESLS WS 2016, Lund, Sweden

M. Schuh for the accelerator team

Laboratory for Applications of Synchrotron radiation (LAS) Institute for Beam Physics and Technology (IBPT)

Acknowledgements

KIT Team (from IBPT, IMS, IPE, IPS and LAS): M. Balzer, A. Bernhard, E. Blomley, D. Breitmeier, M. Brosi, E. Bründermann, S. Casalbuoni, M. Caselle, A. Grau, S. Funkner, J. Gethmann, B. Härer, N. Hiller, E. Huttel, K.S. Ilin, B. Kehrer, A. Kopmann, S. Marsching, Y.-L. Mathis, W. Mexner, M.J. Nasse, G. Niehues, A. Papash, A. Plech, J. Raasch, L. Rota, R. Ruprecht, D. Saez de Jauregui ,M. Schedler, A. Scheuring, P. Schönfeldt, M. Schwarz, M. Siegel, N.J. Smale, J. Steinmann, P. Wesolowski, S. Wuensch, M. Weber, P. Wesolowski, M. Yan, and A.-S. Müller

Collaboration partners

Outline

- New mission
- Operation
- Running R&D projects
 - Diagnostic developments
 - THz radiation enhancement
 - CLIC damping ring wiggler
 - EU projects
- Outlook

4 2016-11-29 ANKA, Status and upgrade proposals, 23rd ESLS WS 2016, Lund, Sweden

Accelerator Technology Platform @ KIT

Compact Magnet Technology

Electronics

Vacuum Technology

Superconductivity &

HTS developments

Multi-dimensional Spectroscopy & Imaging Big Data, Data Science

THE OWNER OF

Storage Ring

Test Facility

Simulations Mathematics Theory

Short-Pulse Linac **Test Facility**

Cryogenics

Accelerators @ KIT

User applications & accelerator test facilities

- Circumference: 110.4 m
- Energy range: 0.5 2.5 GeV
- RF frequency: 500 MHz
- Revolution frequency: 2.715 MHz
- Beam current up to 200 mA
- RMS bunch length: 45 ps (for 2.5 GeV), down to a few ps (for 1.3 GeV)

- Length: < 20 m
- Energy: ~ 41 MeV
- RF frequency: 3 GHz
- Pulse repetition rate: 10 Hz
- Electron bunch charge: 0.001 3 nC
- RMS bunch length: 1 300 fs
- THz E-Field strength: up to 1 GV/m

Activities

- LLRF-System migration complete
 - More diagnostics
 - Triggered beam manipulation
- New IDs
 - CLIC damping ring wiggler (2016 Q1)
 - In-vacuum undulator (2016 Q2)
- Diagnostics
 - Moved diagnostics due to new ID (2016 Q2)
 - New EO-Arm installed (2016 Q2)
 - Synchronization of diagnostic devices
 - 10kHz BPM data readout
 - New septum (2016 Q2)

Operation issues - Q1

No injection after winter shutdown
 Found fibers inside ID beam pipe

8 2016-11-29 ANKA, Status and upgrade proposals, 23rd ESLS WS 2016, Lund, Sweden

Operation issues - Q1

No injection after winter shutdown
 Found fibers inside ID beam pipe

Operation Issues - Q2

- Storage ring septum failed
 - Replaces with spare septum
 - Redesign of septum in progress
- Found broken rf fingers in bellow
- Bunch by Bunch feedback
 - Amplifier broken
 - HDD crashed
- Two out of the three cooling plants failed
 - One system repaired
 - New cooling plant in progress

Operation issues Q3

- Cavity motors failed due to broken clutch to encoder
 - Replaced with other clutch
 - New motors and gears planned
- Water interlocks
 - PLC failed, replaced with new PLC and integrated in control system
 - Frequent water interlocks
 - Cleaned flow monitors
 - Installed flow meters to improve diagnostics
 - Analysis running
- Libera unit failed (first one)
- Water leak in Quadrupole coil
- Lifetime and current limitations due to bad vacuum (4 sections vented)

Operation issues Q4

Twisted copper plate in ID bellow prevented injection

- Vented section
- Adjusted plate
- Still recovering from bad vacuum

Marcel.Schuh@kit.edu Laboratory for applications of synchrotron radiation (LAS)

Lifetime reduction due to octupole resonance

- Reduction of life time from 15 to 12 h has been observed while CAT-ACT wiggler was in operation at high field level (B = 2.2 - 2.5 T)
- ID is installed in short straight section with large vertical beta function (13 m)
- Coherent shift of vertical tune is compensated locally
- Strong sextupoles at positive chromaticity +2,+6
- Dynamic aperture studies show losses for off-momentum particles
- Successful test with other working point
- Next step: Implement new working point

Synchronized single shot beam diagnostics

Marcel.Schuh@kit.edu Laboratory for applications of synchrotron radiation (LAS)

EO based longitudinal diagnostics

- Fast spectrometer readout
 2015-09: KALYPSO I (0.9 MHz)
 - 2016-04: KALYPSO II (2.7 MHz)
- Redesign of the ANKA EO-Arm
 - Reduce the impact of wake fields
 - Installed in June
 - In commissioning
 - Two new EO Laser systems assembled together with DESY

1.20 1.18 1.16 1.14 1.12 1.10 1.08 1.08 0 1.04 1.02 1.00

Inovesa

Simulated

PRL 117, 174802 (2016)

Influence of filling pattern on THz spectrum

Frequency / GHz 272.6361 272.6362 272.6363 272.6364 -70 Harmonic number (p): 100418 ²ower / dBm RBW: 1 kHz -80 7.5 kHz comb VBW: 1 Hz (Synchrotronfrequency -90 -100 -110 -100 -150 -50 50 100 150 Frequency relative / kHz

Frequency-Comb Spectrum of Periodic-Patterned Signals

Johannes L. Steinmann,^{1,*} Edmund Blomley,² Miriam Brosi,¹ Erik Bründermann,² Michele Caselle,³ Jeffrey L. Hesler,⁴ Nicole Hiller,² Benjamin Kehrer,¹ Yves-Laurent Mathis,² Michael J. Nasse,² Juliane Raasch,⁵ Manuel Schedler,¹ Patrik Schönfeldt,² Marcel Schuh,¹ Markus Schwarz,¹ Michael Siegel,⁵ Nigel Smale,² Marc Weber,³ and Anke-Susanne Müller²

> Marcel.Schuh@kit.edu Laboratory for applications of synchrotron radiation (LAS)

- By the use of a heterodyne mixing setup, the discrete revolution frequency harmonics and even synchrotron frequency modulation can be observed
- The intensity of the harmonics is dependent on the discrete Fourier transformation of the filling pattern
- Frequency-Comp spectrum

16 2016-11-29 ANKA, Status and upgrade proposals, 23rd ESLS WS 2016, Lund, Sweden

CLIC damping ring wiggler

- ANKA has similar properties as the damping rings proposed for CLIC
- Design and construction of a SC wiggler according CLIC-damping ring specifications (CERN, BINP)
- Test and beam dynamics studies at ANKA in progress
- Modeling low alpha lattice with IDs

EuroCirCol

FCC H2020 Project - The European Circular Energy-Frontier Collider Study
FCC-hh beam screen prototype

Marcel.Schuh@kit.edu Laboratory for applications of synchrotron radiation (LAS)

18 2016-11-29 ANKA, Status and upgrade proposals, 23rd ESLS WS 2016, Lund, Sweden

EU accelerator test facilities

- ARIES Accelerator Research and Innovation for European Science and Society
- 42 beneficiaries from 18 European countries
- Transnational Access to 14 European accelerator test facilities
- KIT will be active in:
 - WP2: Training, Communication and Outreach for Accelerator Science in Europe: Tasks 2.2 to 2.4: Contributing information/media to the e-learning project. Students will serve as representative test groups to benchmark elearning components.
 - WP6: Accelerator / Beam Control, Design & Coordination Task 6.3: Facilitate exchange information and accelerator operation experience.
 - WP7: Beam tests and commissioning of ultra-low emittance rings: Task 7.4: Facilitate exchange of information on beam dynamics and ultra-low emittance source technology.
 - WP11: Electron and proton beam testing: ANKA and FLUTE will provide a unique test environment as part of a transnational access program.

Outlook

- Continue refurbishment program for ANKA
- Finish construction and continue commissioning of FLUTE
- Active R&D programme
 - Diagnostics
 - **THz**
 - SC-IDs
- To master all these tasks we have / will open new positions
 - RF expert
 - Machine operation

Department head

contact: anne.stoesser@kit.edu

Outlook

- Continue refurbishment program for ANKA
- Finish construction and continue commissioning of FLUTE
- Active R&D programme
 - Diagnostics
 - **THz**
 - SC-IDs
- To master all these tasks we have / will open new positions
 - RF expert
 - Machine operation
 - Department head

contact: anne.stoesser@kit.edu

Thank you for your attention and the KIT team for their support!

Backup slides

Diagnostics at ANKA

SR light monitor **EO-Nearfield setup** Streak camera **Fast-gated camera BBB** feedback system Ultra fast THz detectors Lead glass detector In-Air X-ray detector **BPMs BLMs**

ANKA EO Arm Redesign

- Reduce wake-fields & heat load which limit use in multi-bunch operation
- Maintain compactness of setup (12 cm flange-flange)

Marcel.Schuh@kit.edu Laboratory for applications of synchrotron radiation (LAS)

Laser beam

path

FLUTE: Accelerator test facility at KIT

FLUTE (Ferninfrarot Linac- Und Test-Experiment)

- Test facility for **accelerator physics within ARD**
- **Experiments** with THz radiation

Serve as a test bench for new beam diagnostic methods and tools

- Develop single shot fs diagnostics
- Synchronization on a femtosecond level
- Systematic bunch compression studies
- Generate intense THz radiation
- Compare different coherent THz radiation generation schemes in simulation and experiment

Final electron energy	~ 41	MeV
Electron bunch charge	0.001 - 3	nC
Electron bunch length	1 - 300	fs
Pulse repetition rate	10	Hz
THz E-Field strength	up to 1.2	GV/m

M. Nasse et al., Rev. Sci. Instrum. 84, 022705 (2013)

PAUL SCHERRER INSTITUT

KArlsruhe Linear arraY detector for MHzrePetition rate SpectrOscopy

Based on PCIe/DMA

Marcel.Schuh@kit.edu Laboratory for applications of synchrotron radiation (LAS)

128 inputs, 4 analog outputs operating at 32 MHz

Max. read-out rate: 1 Mfps

KALYPSO collaboration

