

a method to obtain optical parameters from closed orbits without knowledge of magnet strengths¹

Bernard Riemann

24th ESLS workshop – Lund – 2016-11-30

¹Thanks to the whole DELTA and HZB staff for making this possible!

DELTA facility ★ drawing by T. Schulte-Eickhoff (TU Dortmund University, 2015-05)

- necessary for orbit correction.
- can be recorded at almost every storage ring with standard hardware.

Betatron oscillation / Turn-by-Turn data

	ring	length L	$\max(f_{\beta})$
	LHC	27 km	5.55 kHz
	SPS	6.9 km	20 kHz
$s = 0 \qquad \qquad \underset{\text{turn } n = 1}{\text{turn } n = 1}$	MAX IV 3 GeV	528 m	284 kHz
	BESSY II	240 m	625 MHz
	DELTA	115 m	1.3 MHz
	ANKA	110 m	1.36 MHz
	MAX IV 1.5 GeV	96 m	1.55 MHz
	MLS	48 m	3.12 MHz
	ASTRID2	45.7 m	3.28 MHz

- observable frequency $f_{\beta} \leq f_{\circ}/2$ (but same magnitude)
- Recording of betatron oscillations with correct phases requires fast synchronization.
- High-resolution and high-frequency sampling requires special hardware.

Problem statement

 ²H. Wiedemann, Particle Accelerator Physics, 3rd ed. (Springer, 2007)
 ³lead to development of 'direct observation' methods (TbT analysis, AC dipole)
 ⁴A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, 1st ed. (SIAM, 2005)

 \bigcirc Beam optics $\rightarrow \implies \rightarrow$ Response matrix: Elementary!²

²H. Wiedemann, *Particle Accelerator Physics*, 3rd ed. (Springer, 2007)

³lead to development of 'direct observation' methods (TbT analysis, AC dipole)

⁴A. Tarantola, *Inverse Problem Theory and Methods for Model Parameter Estimation*, 1st ed. (SIAM, 2005)

- \bigcirc Beam optics $\rightarrow \blacksquare \rightarrow$ Response matrix: Elementary!²
- \bigcirc Response matrix $\rightarrow \implies \rightarrow$ Beam optics: Non-trivial!³

 ²H. Wiedemann, *Particle Accelerator Physics*, 3rd ed. (Springer, 2007)
 ³lead to development of 'direct observation' methods (TbT analysis, AC dipole)

⁴A. Tarantola, *Inverse Problem Theory and Methods for Model Parameter Estimation*, 1st ed. (SIAM, 2005)

Problem statement

- \bigcirc Beam optics → \blacksquare → Response matrix: Elementary!²
- \bigcirc Response matrix $\rightarrow \blacksquare \rightarrow$ Beam optics: Non-trivial!³
- ⇒ This is characteristic for an inverse problem.⁴ Examples: tomography, gravitational waves, particle collisions...

 ²H. Wiedemann, Particle Accelerator Physics, 3rd ed. (Springer, 2007)
 ³lead to development of 'direct observation' methods (TbT analysis, AC dipole)
 ⁴A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, 1st ed. (SIAM, 2005)

Problem statement

- \bigcirc Beam optics → \blacksquare → Response matrix: Elementary!²
- \bigcirc Response matrix $\rightarrow \blacksquare \rightarrow$ Beam optics: Non-trivial!³
- ⇒ This is characteristic for an inverse problem.⁴ Examples: tomography, gravitational waves, particle collisions...

The response problem

beam optics at BPM and corrector positions are encoded in response matrix – but how to obtain them?

 ²H. Wiedemann, *Particle Accelerator Physics*, 3rd ed. (Springer, 2007)
 ³lead to development of 'direct observation' methods (TbT analysis, AC dipole)
 ⁴A. Tarantola, *Inverse Problem Theory and Methods for Model Parameter Estimation*, 1st ed. (SIAM, 2005)

Linear Optics from Closed Orbits

☆ J. Safranek, Nucl. Instr. Meth. Phys. Res. A 388 (1-2), pp. 27-36 (Mar 1997)

But LOCO does not converge for the present DELTA model...

reducing LOCO assumptions ≻

only keep BPM-corrector order & one drift space (optional)

Repair the optimization

Task 1 Connect optimizer to beam optics.

Task 2 Find appropriate start values. \rightarrow later

Beam optics by eigenorbits

Real particle trajectories at turn n are described by

$$\vec{r}_n(s) = \Re\{\vec{R}_m(s)e^{i\mu_m n}\}$$

Closed orbits using eigenorbits

Outside of any local perturbation, a closed orbit is a betatron oscillation.

- This is *independent* of the perturbation type! (not decoupled, thin-lens or else...)
- This is also independent of the kick angle.
- With no further assumptions, one can create a general closed orbit model based on eigenorbits.

Bilinear-Exponential model with dispersion (BE+d model)

$$\vec{r}_{jk} = \Re\left\{\sum_{m} \vec{R}_{jm} A_{km} e^{-iS_{jk}\mu_m/2}\right\} + \vec{d}_j b_k$$

- \vec{r}_{jk} : response matrix elements (BPM *j*, corrector *k*)
- $S_{jk} = \pm 1$: depend only on BPM-corrector order (topology)

BE+d optical parameters

- $\vec{R}_{jm} = \vec{R}_m(s_j)$: eigenorbit at BPM *j* (relation to β, ϕ)
- $A_{km} \propto \vec{R}_m(\tilde{s}_k)$: depends on β, ϕ at corrector k
- μ_m : angular betatron tunes $(2\pi Q_m)$
- \vec{d}_j , b_k : dispersion coefficients

<u>Closed</u> <u>Orbit</u> <u>B</u>ilinear-<u>E</u>xponential <u>A</u>nalysis

Bilinear-Exponential model with dispersion (BE+d model)

$$\vec{r}_{jk}^{\text{model}} = \Re\left\{\sum_{m} \vec{R}_{jm} A_{km} \,\mathrm{e}^{-iS_{jk}\mu_m/2}\right\} + \vec{d}_j \,b_k$$

One can now rephrase the inverse problem:

The response problem Find all BE+d optical parameters \vec{R}_{jm} , A_{km} , μ_m , \vec{d}_j , b_k so that $\chi^2 = \sum_{ik} \left| \vec{r}_{jk}^{\text{model}} - \vec{r}_{jk} \right|^2$ is minimal.

<u>Closed</u> <u>Orbit</u> <u>B</u>ilinear-<u>E</u>xponential <u>A</u>nalysis

Bilinear-Exponential model with dispersion (BE+d model)

$$\vec{r}_{jk}^{\text{model}} = \Re\left\{\sum_{m} \vec{R}_{jm} A_{km} \,\mathrm{e}^{-iS_{jk}\mu_m/2}\right\} + \vec{d}_j \,b_k$$

One can now rephrase the inverse problem:

The response problem

Find all BE+d optical parameters \vec{R}_{jm} , A_{km} , μ_m , \vec{d}_j , b_k

so that
$$\chi^2 = \sum_{jk} \left| \vec{r}_{jk}^{\text{model}} - \vec{r}_{jk} \right|^2$$
 is minimal.

Compute gradients *analytically*, e.g.

$$\frac{\mathrm{d}}{\mathrm{d}d_{j,\mathrm{x}}}\chi^2 = 2\sum_k \left|x_{jk}^{\mathrm{model}} - x_{jk}\right| b_k$$

Task 1 \square Connect optimizer to beam optics. \rightarrow Optimize BE+d model.

Task 2 ► Find appropriate start values.

Monitor-Corrector Subset algorithm

- compute one-turn $\mathbf{T}_{\circ} = \mathbf{T}_{3 \rightarrow 1} \mathbf{T}_{1 \rightarrow 3}$ at *one* position in the ring. although technically possible, this approach is uncommon
- knowledge of T_o ⇔ knowledge of transverse eigenmodes (amplitude & phase) at two BPMs.⁵

⁵By similarity transform, basic principle applies to eigenorbits \vec{R}_{jm} at two monitors even for unknown segments.

From eigenorbit data at two BPMs, compute missing data at all other BPMs and correctors.

CM mapping consists of two subroutines

- **1** C subroutine: Compute all A_{km} from a subset of \vec{R}_{jm} .
- M subroutine: Compute all *R_{jm}* from all *A_{km}*.
 This subroutine has predecessors which input depended on accelerator models.^{*a*}

^aM. Harrison and S. Peggs, Proc. PAC 1987, pp. 1105–1107, Washington, USA
 ^bH. Koiso et al., Int. Workshop on Perf. Impr. of Electron-Positron Collider Particle Factories, Tsukuba, Japan (1999-09)

MCS layer

Compute starting values from measured response.

Optimization layer

Minimize effects of noise, get more precise estimates of optics.

Postprocessing.

- optional normalization (invariant) by known segment (drift space)
- extraction of φ and β (drift) or const·β (no drift) at BPMs, tunes incl. integer and quadrant and unnormalized dispersion factors.

DELTA response matrices (2006-03 - 2016-01)
✤ M. Grewe, Ph.D. Dissertation (Dortmund University, 2005-01)
� P. Hartmann et al., Proc. DIPAC 2007, WEPB21, Venice, Italy

- LOCO not available for DELTA due to bad convergence (deviating standard operation mode)
- direct tune |µ_m| measurement ("Q-Pulser") active during operation.

DELTA response matrices (2006-03 - 2016-01)

Tune comparison

- Most COBEA tunes do not show large deviations to Q-pulser tunes.
 Exceptions: 166,153,57,52,152,151,164,171
- Of the other tunes,

some are in an unusual quadrant.

54, 55, 75, 161

DELTA response matrices (2006-03 - 2016-01)

Example: RID 151 - 154 Elog entries

responses were all recorded on 2014-09-24.

trying to repair DC1

...At that location, one could see that the isolation of the supply cable bursted at a constriction. After disassembly, one could measure current flow between magnet and this cable. ...

Orbit problems

J. Friedl, 19:56

G. Schmidt, 19:21

The orbit correction application (*running on RID 153*) cannot compensate the occurring deviations.

⇒ Fluctuating closed-orbit distortion impinged on measurement. Response matrix not properly recorded.

- 171 response matrices analyzed using COBEA.
 For 120 matrices, Q-Pulser tunes available.
- In 114 of 120 cases, COBEA and Tune feedback results matched up to $\approx 10^{-3}$.
- For the remaining cases, deviations were related to errors in measurement procedures, using DELTAs electronic log

Own TbT validation at DELTA

correctors designed and described in:
 P. Towalski, Ph.D Dissertation in preparation (TU Dortmund University, 2016)

\Lambda control system integration of correctors: S. Kötter

- Utilize an additional set of correctors (Towalski correctors) to measure alternative response matrices.
- 10 BPMs are equipped with hardware to sample the beam turn-by-turn (TbT).
- Comparison of TbT data with recording of response matrices allows to *validate COBEA tunes and monitor vectors* R_{im}.

Own TbT validation at DELTA (TID 22)

Using HZB data from MLS and BESSY II

- ★ D. Engel, A. Jankowiak, R. Müller, M. Ries, M. Ruprecht, J. Feikes et al., E-Mail communication (≥2015-06)
- ✤ J. Feikes, M. von Hartrott, M. Ries, P. Schmid and G. Wüstefeld, Phys. Rev. ST Accel. Beams 14, 030705 (2011-03)

Both accelerator models were unknown to me in detail.
 mail preliminary COBEA results ⇒ get back LOCO results.

Using HZB data from MLS and BESSY II

COBEA input

- 1 decoupled response matrices **x**, **y**
- 2 (column) labels for each corrector
- **3** (row) labels for each monitor
- **4** ordered list of all labels along the beam path ("downstream")
- **5** optional: drift space of known length between two monitors

$MLS \rightarrow fit residuals (x mode)$

$MLS \rightarrow fit residuals (y mode)$

	Quantity	Variable	Value	Error
COBEA tune	-x mode	$Q_{\rm x}^{\rm COBEA}$	3.17766	7.21×10^{-3}
	-y mode	$Q_{\rm y}^{\rm COBEA}$	2.23114	6.28×10^{-3}
LOCO tune	$-x \mod x$	$Q_{\rm x}^{ m LOCO}$	3.17762	
_	-y mode	$Q_{\rm y}^{ m LOCO}$	2.23869	

MLS \rightarrow *x* mode (β and phase advance)

$MLS \rightarrow x$ mode (phase advance and dispersion)

BESSY II \rightarrow fit residuals (*x* mode)

30/35

BESSY II \rightarrow fit residuals (y mode)

31/35

dev. /m rad⁻¹

vert.

residual

BESSY II \rightarrow global results

y mode deviation histogram

Global results	Quantity	Variable	Value	Error
COBEA tune	-x mode	$Q_{\rm x}^{\rm COBEA}$	17.84740	$2.87 imes 10^{-3}$
	-y mode	$Q_{\rm y}^{\rm COBEA}$	6.74054	$3.55 imes 10^{-3}$
LOCO tune	$-x \mod x$	$Q_{\rm x}^{ m LOCO}$	17.84690	
	-y mode	$Q_{\rm y}^{ m LOCO}$	6.74484	

BESSY II $\rightarrow x \mod x$

- able to decompose properly recorded response matrices into optical parameters.
- only order of BPMs and correctors in a storage ring and optional drift space required.
- No symmetries or similar assumptions placed on the accelerator.
- has been applied to BESSY II, MLS and DELTA storage rings. Results seem to be overall consistent with existing measurement procedures.
- $\Rightarrow\,$ should be applicable to a considerable fraction of existing storage rings.

Thank you for your attention! Send me your response (matrix)!

Contact: bernard.riemann@tu-dortmund.de

Find my PhD thesis about COBEA at http://dx.doi.org/10.17877/DE290R-17221

or lookup at DELTA Homepage ("Mitarbeiter / Staff") www.delta.tu-dortmund.de