The XXIV European Synchrotron Light Source Workshop

MAXIV vacuum system, from design to operation

Eshraaq Al-Dmour,
MAX IV laboratory

On behalf of the vacuum team

30th Nov. 2016
Contents

• Vacuum system layout.
• NEG-coating R&D at CERN,
• Installation procedure,
• Vacuum commissioning status.
Standard vacuum chamber geometry

Material: OFS copper
Inside diameter: 22 mm,
Total length: 2.5 m,
Bent part
Arc length: 1 m,
Bending angle: 30°,
Bending radius: 19 m.
NEG-coated.
General vacuum chamber geometry

- Ribs
- Cooling for corrector area
- Beam direction
- Welded bellows
- Distributed cooling
- Chamber body
3 GeV magnet layout

- Total length ~26 m,
- 4.5 m straight section (L)

Min. clearance with the iron 0.5 mm, min. clearance with the coils 2 mm.
One achromat
Length: ~26m

In each achromat:
- 10 BPMs,
- 3 pumping ports (with ion pumps) and 1 pump in FE,
- 1 crotch absorber,
- 3 gate valves.
To validate the coating feasibility 3 main stages of NEG (Ti, Zr, V) coating validation by magnetron sputtering in collaboration with CERN were undertaken. (R&D duration ~2 years).

1. Define and perform initial **surface treatment** of OFS copper substrate.

2. Validate compatibility of NEG-coating (adhesion, thickness, activation behavior):

 a). on etched **OFS copper**.

 b). on **wire-eroded** surfaces and used **brazing alloys**.

3. NEG-coating validation of compact vacuum chamber **geometries**:

 a). Coating and testing of **small diameter, bent** tubes.

 b). Establish coating procedure/technology and coat chambers of **complex geometry**.
NEG coating: R&D at CERN

- **Example**: Develop coating procedure for chambers with small antechamber (vertical aperture from 5 to 7 mm).

Prototype made at CERN in two halves to be able to inspect the coating quality.
NEG-coating series production

Main vacuum chamber types:

1. Standard bent vacuum chambers (VC4) - 1.5° and 3° bends,
 - 2.8 m (VC4)

2. Straight vacuum (VC10) chambers,
 - 2 m (VC10B)

3. Special vacuum chambers.
 - Collaboration with CERN (15%)

Industry (70% length wise)

Collaboration with ESRF (15%)

- BPM
 - 17.2 mm

- Electron beam
 - Photon beam

- Beam direction

- 3 GeV - 1 achromat (~26m)
Installation procedure

Ring installation was tested and rehearsed by installing and activating 1 mockup achromat in summer 2014.

Actual installation started in November 2014, ended June 2015.

Installation done with help from Budker Institute.

7 magnet blocks on concrete girders

Strongback
Installation procedure

• Assembly in-situ (above magnets),
• Pump down and testing,
• Lifting,
• Bake out (1 day), activation (1 day),
Installation procedure

- Lowering to the bottom magnet half,
- Installation of final equipment (supports, BPM cables),
- Lowering to magnet block.
Coating non-conformities

All the chambers were inspected at site before installation.

Observed peeling-off:
At RF fingers Cu-Be insert and Cu end piece. RF fingers and Cu end were not shielded properly during coating.
Solution: new pieces ordered and replaced (without coating).

Peeling-off at RF fingers and Copper end piece

Severe peeling-off

Peeling-off at the edge of stainless VC. Chamber not approved for installation.

Uncoated areas:
Few cm^2 uncoated, in complex chambers.
Commissioning progress

3 GeV storage ring commissioning started in August 2015

Average base pressure:
• Gauges 2e-10 mbar,
• Ion pumps in 8e-11 mbar range.

Accumulated beam dose:
• 120 Ah.

1st shutdown March 2016:
• 2 in-vacuum undulators,

2nd shutdown August 2016:
• 2 EPU chambers (8x36mm),
• In-vacuum wiggler.
Pressures at dose 16 Ah and 95 Ah, during beam ramp up. (pressure recorded by extractor gauge at not NEG coated crotch absorber in S1)
Pressure in one achromat vs beam current

Pressures at dose 95 Ah, during beam ramp up, recorded at different positions along achromat (L, S1, S2)

Legend:
- Pressure at S1 (ion pump)*
- Pressure at S1 (extractor gauge)
- Pressure at S2 (penning gauge)
- Pressure at S2 (ion pump)
- Pressure at L (ion pump)

* Pressure at S1 (Ion pump) probably due to electrical effect
Vacuum conditioning curve

Normalized average pressure vs beam dose, recorded in S1 uncoated crotch absorber, and S2 NEG-coated.

Legend:
- Pressure at S1 (extractor gauge)
- Pressure at S2 (penning gauge)

Equations:
- $Y = (1.4 \times 10^{-10}) \times x^{-0.68}$
- $Y = (1.6 \times 10^{-10}) \times x^{-0.75}$
Vacuum conditioning curve

Normalized average pressure vs acc. dose

- ALBA: Raquel Monge, privet communication.
- SLS: L. Schulz et al, STATUS REPORT OF THE SLS STORAGE RING VACUUM SYSTEM: EXPERIENCE AFTER TWO YEARS OF OPERATION
- ASP: E. Al-Dmour, VACUUM PERFORMANCE IN THE MOST RECENT THIRD GENERATION SYNCHROTRON LIGHT SOURCES, EPAC08.
Lifetime evolution

Maximum stored beam current 198 mA

Normalized lifetime vs accumulated dose
$I \cdot \tau$ [mA·h] vs Dose [Ah]
Residual gas spectrum at 140 mA beam current

- **H2O (18)**: 0.10%
- **OH (17)**: 0.05%
- **CH4 (16)**: 2.16%
- **(15)**: 1.17%
- **(14)**: 0.33%
- **C (12)**: 0.78%
- **He (4)**: 0.12%
- **F (19)**: 0.08%
- **CO (28)**: 9.39%
- **Cl (36)**: 0.00%
- **Ar (40)**: 0.01%
- **CO2 (44)**: 0.42%
- **O2 (32)**: 0.01%
- **Cl (35)**: 0.03%

Main residual gasses:
- Hydrogen 85.33 %
- Carbon monoxide 9.39 %
- Carbon dioxide 0.42 %
- Methane 2.16-1.17 %

* Mass 16 and 19 is most likely due to intrinsic degassing of the gas spectrometer.
Scraper measurements

Mean lifetime vs vertical scraper distance from the beam center (Done at beam dose 40 Ah)

Total average pressure along the beam path (contribution from all gases based on the RGA spectra)

\[y = 0.0363x + 1.5052 \]
\[R^2 = 0.9849 \]

At 50 mA (dose 40 Ah):
Average pressure \(P = 4.4 \times 10^{-9} \text{ mbar} \)
Elastic beam lifetime \(\tau_{\text{elastic}} = 104.7 \text{ h} \)
Inelastic beam lifetime \(\tau_{\text{inelastic}} = 88.5 \text{ h} \)
Touschek lifetime \(\tau_{\text{Touschek}} = 16.6 \text{ h} \)

*Scraper measurements and calculations done by Jens Sundberg, Thanks!
The XXIV European Synchrotron Light Source Workshop
Eshraq Al-Dmour

Problems

- RF cavity (S2) venting due to broken high power feedthrough during conditioning (with closed valves). Now cavity is removed from the ring and dummy chamber placed as could not be run with high power anymore. Now awaits conditioning outside the ring. Also pick up loops ceramic parts had leaks.

- Hot spots in proximity of crotch absorber (S1), miss-positioning of the crotch chamber,
Thanks for your attention

Acknowledgments:
Jonny Ahlbäck, Marek Grabski, Chiara Pasquino, Esa Paju, Michael Gilg, Jens Sundberg, Åke Andersson, Pedro F. Tavares.
Collaborators: CERN, ALBA, ESRF, BINP.