Lattice studies for SOLEIL ring upgrade

2016

Alexandre Loulergue

On behalf of the accelerator physics group

Low Emittance Ring Lattice Design Workshop

Lund, 1-2 December 2016

Ring lattice options

Low emittance \leq 300 pm

7 (6) BA based + dispersion bump + \sim -I transform Off axis injection

Very low emittance \leq 100 pm

MBA based On axis injection

100 % inspired from : <

L. Farvacque et al. , A Low-Emittance Lattice for the ESRF, Proceedings of IPAC (2013)

A. Alekou, et al., Study of Double Triple Achromat Lattice for a 3 GeV Light source Proceedings of IPAC (2016)

A. Streun, The anti-bend cell for ultralow emittance storage ring lattices NIMA, 737 (2014)

Ring lattice footprint

7BA case

Tracking by AT

6BA case

From 7 to 6BA : Removing the central dipole = OK Enlarging the central section = more difficult vs NL

Optics and sextupoles tuned to reduce tune vs energy The use of anti-bend helps here

Tune vs amplitude still large / No octupoles

Central straight : Dispersion a bit large (~ 20 mm) Length a bit short : 2.3 m here ...

Merging 7 and 6BA

Tracking by AT

FMA by TRACY

Lifetime by OPA

Very similar than AT – TRACY - BETA

500 mA over 416 bunches 1.2 mA per bunch 8 pm in vertical (~ 4 % coupling) 10 ps rms (0 A bunch length) 3 MV at 352 MHz

Touschek-lifetime :

Pipe H diameter 40 mm \sim 10 h 32 mm \sim 6.6 h

6BA case - w/o dispersion bump

6BA with short straight section of 3 m No -I transform 8 sextupole families (1 harmonic)

Under investigation with rather large emittance of 210 pm Small DA < 5 mm with simple optimization

Test with MOGA approach

 $G_{max} = 50 \text{ T/m}$ and 60 T/m in bend (0.6 T) S=4500 T/m² over 200 mm

6BA case – Test MOGA pass

Works performed by Hung-Chun Chao in post doc position at SOLEIL

M. P. Ehrlichman, Genetic algorithm for chromaticity correction in diffraction limited storage rings, PRSTAB,19, 044001 (2016)

Conclusion

Need to enlarge the short straight section

Add larger beta function at injection point

Include thick sextupoles & fringe field

Control the tune versus amplitude ==> Includes octupoles ==> MOGA tools

Include the double low beta preserving the two canted long beam line geometry

Lattice error sensitivity

