

Fibre Technology perspectives

CNF-structures of dispersions, Gel structures, film and foam properties and carbohydrate solubility and their film-formation

Polymer Technolog

- How do cellulose fibrils reach their arrested/glassy state? What is the structure of the glassy state, how can we influence it and what is the influence on macroscopic structures and properties?
- Internal structure of cellulose beads and how it is changed with different processing conditions-Link to fibre wall organisation (Water/cellulose interactions).
- The structure of LbLs (Layer-by-Layer) and their macroscopic properties (Tailoring of mechanical properties)
- Solubility of carbohydrates, how it is changed with concentration and its influence on macroscopic properties??

Resulting material

Material properties

KTH Fibre and Polymer Technology

Table 1. Charge, Gravimetric Yield, and Width of NFC Fibrils^a

property	NFC600	NFC400	NFC120
pretreatment	CarbMe	CarbMe	enzyme
charge (μ eq/g)			
pulp	589	327	44
dispersion	595	383	120
yield	97%	47%	36%
width (nm)			
AFM	3.5	2.3	4.6
cryo-TEM	5.0	4.3	5.5

^{*a*} The charge of the pulp was measured with conductometric titration, and the charge of the dispersions was measured with polyelectrolyte titration. The gravimetric yield was measured after the centrifugation step.

Fall et al, Langmuir 27 (2011)11332

 $\psi_{surface}$; 0-(-250) mV

 $c_{v} = \frac{1.5}{r^{2}}$ $c_{v} = \text{volumetric overlap concentration}$ $r = \text{length to diameter ratio}(\frac{L}{d})$ 56 mg / l

KTH VETENSKAP VCH KONST

KTH Fibre and Polymer Technology

Bonn et al, Phys. Rev. E (2004) 69,031404

"Real" dimensions at different salt concentrations

Gelling in practice-DLS

KTH Fibre and Polymer Technology

Dynamic Light scattering Malvern Zetasizer, Nanoseries

DLS-Upper part of measuring cell

DLS-Lower part of measuring cell

Gelling in practice-Methyl orange visualization

1 g/l

0.05 g/l

Cellulose beads as model gels

KTH Fibre and Polymer Technology

Link to fibre wall organisation needed

Solubility of hemicelluloses

KTH Fibre and Polymer Technology

LbL Structure and properties

KTH Fibre and Polymer Technology

Comparison between different charges

KTH Fibre and Polymer Technology

50 µeq./g

2016-09-25

wwsc Gelling of nanocellulose dispersions Controlling factors- Charge and

KTH Fibre and olymer Technolog

 $C_{Col} = 2 \text{ mM}$

 $C_{Col} = 20 \text{ mM}$

 $C_{Col} = 8 \text{ mM}$

Tempo-CNF

counterions

Far from aggregation caused by counterions

Sulf-CNC $(\sigma = 0.2 \text{ mmol/g})$ 86 94

 $C_{Col} = 19 \text{ mM}$

Gelling of nano-cellulose dispersions Controlling factors- Aspect ratio

KTH Fibre and Polymer Technolog

Entanglement of nanofibrils have a large effect on gel formation- Movement restriction

CarbMe-CNC

▲ Tox-CNF

CarbMe-CNF

Particle	Z _{avg} (DLS)
CarbMeth CNF	558 nm
TEMPO-CNF	256 nm
CarbMeth CNC	143 nm
Sulf-CNC	94 nm

Orientation during gel formation Carboxymethylated CNF

Indications of flow-induced alignment during water removal!!