
XDS news March 2017

Kay Diederichs, HDRMX@Lund, 16.3.2017

Native reading of data files using a dynamically (i.e.
at runtime) loaded library

(this is old news; for more information see talks at previous HDRMX meetings)

● A generic interface for this purpose was implemented
● Currently, it is only used by the Dectris HDF5 Plug-In
● Removes the overhead of H5ToXds (or similar programs)
● Can be used to read arbitrary files, if the Producer provides a library
● XDSwiki will soon show source code of a minimal example (in Fortran)

2

XDS on Xeon Phi “Knights Landing” (KNL)

 9/2016: Xeon Phi “Knights Landing” (KNL)
● 64, 68 or 72 cores in a single socket; 4-fold (efficient!) Hyper-Threading; ≤ 384 GB ECC-DDR4; 16 GB built-in high-bandwidth (5 times faster) MCDRAM
● Boots and runs Linux (e.g. RHEL7) natively; has many new features e.g. AVX512, a vector instruction w/ 512 bits (AVX=256 bits; SSE=128 bits); needs recompilation for

highest performance
● Vector peak performance: >3 TeraFlops Double Precision; >6 TeraFlops SP

System tried: 1 KNL 7210 processor; 64*4=256 threads; 192 GB RAM; 750W power supply; (e.g. workstation SuperServer 5038K-i ~6.000€). Note A: until now, systems reaching 3
TeraFlops cost >60.000€ (8 * Xeon E7). Note B: SuperServer 5028TK-HTR: 2U-rackmount; 4 KNL 7210 (>1.000 threads): ~20.000€

3

● KNL usage depends on environment variables, and these may influence several overlapping areas
and override each other. There are several such “families”, e.g. GOMP_CPU_AFFINITY,
OMP_PLACES, OMP_PROC_BIND, KMP_SETTINGS, KMP_AFFINITY, KMP_PLACE_THREADS

● "Intel Xeon Phi Processor High Performance Programming, Knights Landing Edition” by Reinders,
Jeffers and Sodani is useful. Usage of MPI+OpenMP seems well documented, but not scheduling of
concurrent multi-core processes (XDS!) on KNL. Overall, confusing and inconsistent documentation.

● use OMP_PROC_BIND=false (or KMP_AFFINITY=verbose,none, or explicit numactl)
● KNL benefits from latest versions of BIOS, operating system (CentOS7.3), compiler (ifort 17)
● quadrant mode, with MCDRAM configured as cache, gives a good baseline for performance tuning.

Robust findings with Eiger data on KNL

9/2016: First findings on KNL
Test data: 3600 Eiger 16M frames; HDF5 (using H5ToXds)

● XDS runs “out of the box”; re-compiled for <=72 threads (old: <=32 threads)
● Compiling (ifort v16 or v17 beta) with -xMIC-AVX512 : ~30% faster
● Using MCDRAM instead of normal RAM in “Flat” mode: 5% faster in COLSPOT; >10% faster in INTEGRATE (memkind not yet tried; “Cache” and “Hybrid” mode not yet

tried);
● NUMA configuration & environment variables need special attention
● Work in progress; system looks promising but too early to summarize

References: http://colfaxresearch.com/get-ready-for-intel-knights-landing-3-papers/
4

● KNL needs some tuning (last slide). It is a pain that by default all processes land on core 0 !
● As expected and hoped for, processing is fastest with Dectris’ plugin library (talk by Stefan et al.).

Roughly 15% faster than w/ H5ToXds-script, and twice as fast as pure H5ToXds (w/ my setup).
● Experiments and results are documented in Eiger article of XDSwiki. A single KNL gives a similar

overall processing time as a dual-processor Xeon workstation, but may be cheaper.
● CBF is still 10% faster than HDF5 but there is a tradeoff in CPU versus I/O - CBF has bigger files

but needs less CPU. Therefore, if reading data only once, HDF5 is faster than CBF.

Current version of XDS

9/2016: Parallelization
● COLSPOT: reads several degrees of data; for speedup parallelized on two levels (threads + shell-level) i.e. can use many cores / several computers
● INTEGRATE: as COLSPOT but reads all data
● INIT: reads (typically) only the first 5 degrees of data. Used to be the only serial part of XDS data processing. For big machines/clusters this meant that

up to 1/3 of wallclock time was spent in INIT.
INIT was rewritten; it is now parallel (OpenMP threads) - the speedup depends on the number of threads. For typical 180° data sets of which 5° are used for INIT,
the wallclock time spent in INIT can now be considered insignificant.

5

● INIT parallelization speeds up as expected

● latest BUILT 20170215 does not correctly construct name of master file; use symlink as workaround

ln -s my_master.h5 my_data_000001.h5 (should be obvious from error message). Next

BUILT will fix this.

● special versions (e.g. compiled with -xMIC-AVX512 for KNL) can be obtained from me

XDS: managing bottlenecks

6

has effect on

increasing

CPU I/O Memory

MAXIMUM_NUMBER_OF_JOBS - - ++

NUMBER_OF_IMAGES_IN_CACHE - -- ++

DELPHI - o ++ (if using
NUMBER_OF_IMAGES_IN_CACHE, else o)

1/OSCILLATION_RANGE ++ ++ ++ (if using
NUMBER_OF_IMAGES_IN_CACHE, else o)

++: raises strongly +: raises o: no change -: reduces --: reduces strongly

Personal perspective on best HDRMX practices
● Exposure time: if data quality is unimportant (screening), speed of data

collection may be high - but for structure solution and refinement,
data quality is the most important factor minimize fluctuations!

● Default experiments should use 0.1° oscillation range (except very
low-mosaicity crystals, e.g. viruses). Don’t go overboard - just because it is
possible to do 0.01° oscillation range, does not mean it is necessary/good.

● best way to obtain accurate (not just precise) data: “true multiplicity”
● flux variations on short timescale are mitigated by attenuation/long exposure
● monitoring data quality goes a long way towards good data quality
● beamline staff should know about precision vs accuracy, and establish best

compromises; some users may need education in aspects of data quality.

7

Thank you!
questions?

8

