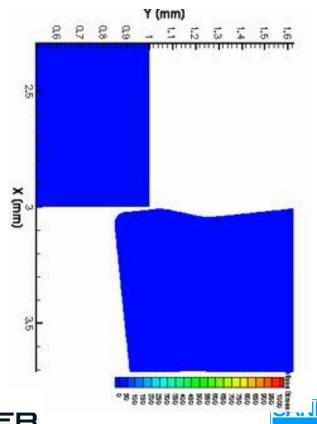
INDUSTRIAL USE OF LARGE RESEARCH FACILITIES THROUGH ACADEMIC

SANDVIK MATERIALS TECHNOLOGY

Urea plant

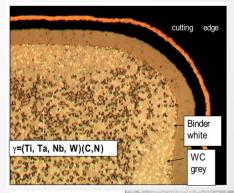
Tubes for umbilicals

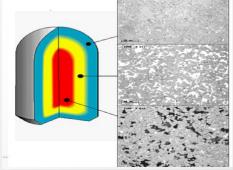
SANDVIK MINING AND ROCK TECHNOLOGY

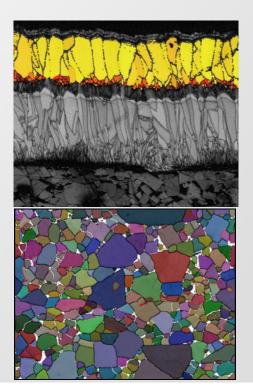


SANDVIK MACHINING SOLUTIONS

High forces and temperatures






CEMENTED CARBIDE TOOLS

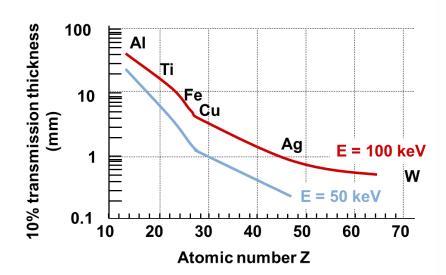


Table 1. Comparison of Neutron and X-Ray Scattering and Absorption Characteristics (X-ray f and μ values calculated for CuK_{α} at $sin\theta/\lambda$ = 0.5)

COMPARISON OF NEUTRON AND X-RAY SCATTERING AND ABSORPTION CHARACTERISTICS						
NEUTRONS			x-	X - RAYS		
ь	μ	†50%	f	μ	† 50 %	
(10 ⁻¹² cm)	(c m ⁻¹)	(cm)	(10 ⁻¹² cm)	(cm ⁻¹)	(cm)	
0.66	0.62	1.11	1.69	9.6	0.72 x 10 ⁻¹	
0.35	0.10	7.05	5.69	131	0.53 x 10 ⁻²	
- 0.34	0.45	1.55	9.12	938	0.74 x 10 ⁻³	
-0.05	0.56	1.25	9.63	1356	0.51 x 10 ⁻³	
0.35	0.47	1.47	10.1	1814	0.38 x 10 ⁻³	
0.96	1.12	0.62	11.5	2424	0.29 x 10 ⁻³	
0.25	2.40	0.29	12.2	2980	0.23 x 10 -3	
1.03	1,86	0.37	12.9	407	0.17 x 10 ⁻²	
0.69	0.48	1.44	21.6	1618	0.43×10 ⁻³	
0.47	1.05	0.66	42.3	3311	0.21x10 ⁻³	
	NE (10 ⁻¹² cm) 0.66 0.35 -0.34 -0.05 0.35 0.96 0.25 1.03	NEUTRON b μ (10 ⁻¹² cm) (cm ⁻¹) 0.66 0.62 0.35 0.10 -0.34 0.45 -0.05 0.56 0.35 0.47 0.96 1.12 0.25 2.40 1.03 1.86 0.69 0.48	TERING AND ABSORPTIONS b μ † 50% (10 ⁻¹² cm) (cm ⁻¹) (cm) 0.66 0.62 1.11 0.35 0.10 7.05 -0.34 0.45 1.55 -0.05 0.56 1.25 0.35 0.47 1.47 0.96 1.12 0.62 0.25 2.40 0.29 1.03 1.86 0.37 0.69 0.48 1.44	TERING AND ABSORPTION CHARACTERING NEUTRONS X - b μ † 50% f (10 ⁻¹² cm) (cm ⁻¹) (cm) (10 ⁻¹² cm) 0.66 0.62 1.11 1.69 0.35 0.10 7.05 5.69 -0.34 0.45 1.55 9.12 -0.05 0.56 1.25 9.63 0.35 0.47 1.47 10.1 0.96 1.12 0.62 11.5 0.25 2.40 0.29 12.2 1.03 1.86 0.37 12.9 0.69 0.48 1.44 21.6	TERING AND ABSORPTION CHARACTERIS NEUTRONS X - RAYS b μ † 50% f μ (10 ⁻¹² cm) (cm ⁻¹) (cm) (10 ⁻¹² cm) (cm ⁻¹) 0.66 0.62 1.11 1.69 9.6 0.35 0.10 7.05 5.69 131 -0.34 0.45 1.55 9.12 938 -0.05 0.56 1.25 9.63 1356 0.35 0.47 1.47 10.1 1814 0.96 1.12 0.62 11.5 2424 0.25 2.40 0.29 12.2 2980 1.03 1.86 0.37 12.9 407 0.69 0.48 1.44 21.6 1618	

SANDVIK AT ESRF

THESIS

High temperature deformation mechanisms of cemented carbides and cermets

Buss, Katharina Advisor: Benoit, Willy Lausanne: EPFL, 2004

The motivation of this work derives from the need of the cutting tool industry to improve its products in order to support harder and harder working conditions, namely increasing cutting speeds and working on stronger modern materials. The lifetime of the tools is limited by plastic deformation that occurs at the cutting edge under working conditions, which involve high temperatures and stresses. The high temperature deformation of the materials that are used for the production of cutting tools is studied. Two base materials are chosen, a WC-Co cemented carbide and a TiWCN-Co cermet, with the same amount and composition of the cobalt binder. The experimental strategy combines macroscopic deformation tests by three-point bending with microscopical observation and mechanical spectroscopy. We also analyze residual stresses and crystal structure as a function of temperature by neutron and X-ray

diffraction. By three-point bending, the transition temperature at which,

SANDVIK AT PETRA III

Journal of Alloys and Compounds

Available online 30 August 2016

In Press, Accepted Manuscript - Note to users

Effects of decomposition route and microstructure on h-AIN formation rate in TiCrAIN alloys

```
Y.H. Chen<sup>a, ≜</sup> , <sup>™</sup> , L. Rogström<sup>a</sup>, D. Ostach<sup>b</sup>, N. Ghafoor<sup>a</sup>, M.P. Johansson-Jõesaar<sup>a, c</sup>, N. Schell<sup>b</sup>, J. Birch<sup>d</sup>, M. Odén<sup>a</sup>

■ Show more
```

- In-situ x-ray scattering measurements during annealing above 1000 °C.
- Activation energy of h-AIN formation in TiCrAIN determined.
- Decomposition route and microstructures influence the activation energy.

SANDVIK AT BESSY

International Journal of Refractory Metals and Hard Materials

Volume 56, April 2016, Pages 27-34

In-situ high temperature stress analysis of Ti(C,N) coatings on functionally graded cemented carbides by energy dispersive synchrotron X-ray diffraction

José García^{a, A.} Maroldo Pinto^b, Esteban Ramos-Moore^c, Carlos Espinoza^c, Jonas Östby^a, Rodrigo Coelhod, 1

^a AB Sandvik Coromant R&D, Lerkrogsvägen 19, SE-12680 Stockholm, Sweden

IOURNAL OF APPLIED CRYSTALLOGRAPHY

Received 10 November 2016 Accepted 28 December 2016

ISSN 1600-5767

Nondestructive separation of residual stress and composition gradients in thin films by angle- and energy-dispersive X-ray diffraction. II. Experimental validation

Manuela Klaus, a* Christoph Genzel and José García

^aMicrostructure and Residual Stress Analysis, Helmholtz-Zentrum Berlin, Albert-Einstein-Strasse 15, Berlin 12489, Germany, and bR&D Materials and Processes, AB Sandvik Coromant, Stockholm, Sweden, *Correspondence e-mail: klaus@helmholtz-berlin.de

SANDVIK - LOS ALAMOS (NEUTRONS)

International Journal of Refractory Metals and Hard Materials

Volume 27, Issue 2, March 2009, Pages 282-287

International Conference on the Science of Hard Materials - 9

Measurement of residual thermal stress in WC–Co by neutron diffraction

D. Maria, A. M., B. Clausen, M.A.M. Bourke, K. Bussa

- ^a Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut de Physique de la Matière Complexe, CH-1015 Lausanne, Switzerland
- ^b Los Alamos National Laboratory, New Mexico 87545, USA

SANDVIK AT ILL (NEUTRONS) ILL - INSTITUT LAUE LANGEVIN, GRENOBLE

Neutron and X-ray diffraction study of (Cr, Co) 7C3

B Kaplan, JM Joubert, M Selleby, S Norgren... - 2015 - diva-portal.org

In view of the extensive use of Cr as a grain growth inhibitor in WC-Co cemented carbides this thesis comprises a combined experimental and ab initio study of a number of critical

issues pertaining to phase equilibria of the subsystems to the W-Co-Cr-C system.

COMMONALITIES IN EXPERIMENTAL SETUPS

In situ Few samples

Mechanical loads

Publications

High temperature

Diffraction

DRIVING FORCES FOR SANDVIK

FUNDAMENTAL RESEARCH

- Often done in collaboration with universities
- Application inspired
- Good fit for largefacility use

APPLIED RESEARCH

- Long history in materials science
- Some collaboration with universities
- Application directed

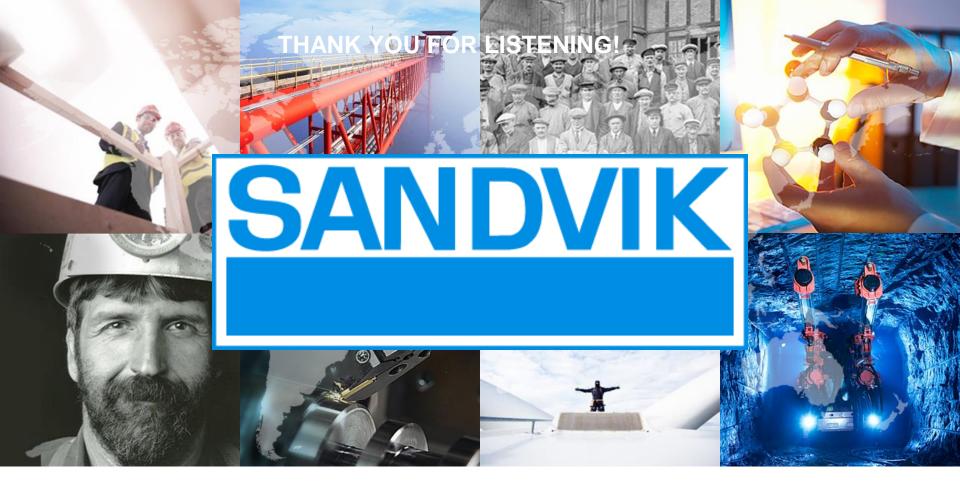
DEVELOPMENT

- Testing driven
- Needs input from research to be effective

A COMMON THREAD

Sandvik R&D

University



Research group at Synchrotron/neutron facility

Difficult problem (funding)

Expertise in field & measurement tech. Good access & support

