
October 2021

Tango Workshop @ ICALEPCS 2021
PyTango and jupyTango

Anton Joubert

NRF/SARAO

Nicolas Leclercq

ESRF

Slide /

Acknowledgements

Sergi Rubio (ALBA) https://github.com/sergirubio

Vincent Michel https://github.com/vxgmichel

Karoo Team (SARAO)

2

https://github.com/sergirubio
https://github.com/vxgmichel

Slide /

Agenda

Introduction
Docker compose environment
Simple Tango device servers
API: Low-level vs. High-level
ITango for easy client access
JupyTango
Events and polling
Miscellaneous
How to test?
Additional resources

3

Strikethrough items: in slide
deck, but won’t be covered
today

Slide /

Introduction

4

Slide /

Python library

Binding over the C++ tango library

... using boost-python (future: pybind11)

Does not use omniorb Python library

Relies on numpy

Multi OS: Linux, Windows, MacOS (sort-of)

Works on Python 2.7, 3.5+

What is PyTango?

5

Slide /

Plus some extras:
Pythonic API
asyncio and gevent event loop
ITango (moved to a separate project)
Experimental TANGO Database server (sqlite backend)
DeviceTestContext for unit testing

What is PyTango?

6

https://pythonhosted.org/itango/

Slide /

OS dependencies:
libtango >= 9.3, and its dependencies: omniORB4 and libzmq
Boost.Python >= 1.33

Python dependencies:
numpy >= 1.1
six >= 1.10

Build dependencies:
Setuptools
Sphinx

Optional dependencies:
futures
gevent

7

Dependencies

Slide /

Docker compose environment

8

Slide /

host (your laptop):

storage in Docker volume: tangodb host folder: pytango/examples/training

Docker compose setup

databaseds

DatabaseDS
server

sys/database/2

tangodb

mariadb

tangotest

TangoTest
server

sys/tg_test/1

cli

Experiment
here

/training/

pytango-training-net

Repo URL: https://gitlab.com/tango-controls/pytango/-/tree/develop/examples/training

container

KEY

network link

volume mount

9

https://gitlab.com/tango-controls/pytango/-/tree/develop/examples/training

Slide /

Start the Docker compose services
New Docker network required (once off):

Start services:

10

Slide /

Run ipython session in container

11

Slide /

Simple Tango device servers

12

Slide /

A device server with a single
device:

File: training/server/ps0a.py

Trivial PowerSupply device

13

https://gitlab.com/tango-controls/pytango/-/blob/21b0688db6875ba92963747fae610df9c9bdcc1d/examples/training/server/ps0a.py

Slide /

Try to run it

14

Slide /

Register (once-off) and run it

Start another shell and connect to the device as client:

15

Slide /

Device connects to external hardware
via TCP.

Need to install gevent in container to
run simulator:
docker-compose exec cli pip install gevent

File: training/server/ps1.py

Less trivial PowerSupply device

Configuration via properties
(can be overridden in the
Tango Database)

16

https://gitlab.com/tango-controls/pytango/-/blob/21b0688db6875ba92963747fae610df9c9bdcc1d/examples/training/server/ps1.py

Slide /

API: Low-level vs. High-level

17

Slide /

Low-level server

18

Slide /

High-level server

Returning a 3-tuple allows the reading’s time and quality to
be modified.
If omitted, default is current time, and ATTR_VALID

19

Slide /

Low-level client

20

Slide /

High-level client

Simpler attribute reading, but cannot access details like time
and quality.

21

Slide /

High-level or "HL" API:

Much less overhead on writing device servers and clients.

Python properties and decorators allow a much more compact syntax.

More readable code allows a better understanding of the behaviour.

Low-level or "classic" API:

Dynamic Attributes are easier to implement, as "attr" argument allows attributes to be

identified by name.

Dynamic Commands implemented only on classic API.

DeviceClass init allows to separate creation of variables that should be done only once from

 those done at each Init() call (but you can still write your own custom init if you want).

Server comparison

22

Slide /

High-level or "HL" API:
More readable code.
Can accidentally use incorrect name for attribute writing.
Cannot access attribute quality or timestamp when reading.

Low-level or "classic" API:
Less readable.
Allows fine-grain access, e.g., for attribute reading.
Many functions only available this way, e.g., command_inout_asynch.

It is fine to mix the two APIs for client access.

Client comparison

23

Slide /

ITango for easy client access

24

Slide /

Connect to device

25

Slide /

Commands and attributes

26

Slide /

Built-in event monitor: mon command

Run mon? for more details

27

Slide /

More info: https://itango.readthedocs.io

It can also be used from a Jupyter notebook

End of ITango demo

28

https://itango.readthedocs.io

Slide /

jupyTango - Nicolas Leclercq

29

Slide /

Build docker image

30

Readme: https://gitlab.com/tango-controls/jupyTango/-/tree/develop/#giving-jupytango-a-try-using-docker

https://gitlab.com/tango-controls/jupyTango/-/tree/develop/#giving-jupytango-a-try-using-docker

Slide /

Run docker-compose

31

Open URL with token in your browser

Slide /

Connect to Jupyter notebook

32

NOTE:
Dynamic updates to plots
(tgm and tango_monitor)
don’t work with
docker-compose under
MacOS!

Slide /

Events and polling

33

Slide /

A completely lazy implementation will consist of letting the client to ask periodically for the values it wants.
Advantages, nothing is done if nobody wants it
Disadvantage, many clients will easily saturate the device

Using Tango server polling, clients only access cached values or receive events
Advantages, most efficient, you protect the device from external clients
Disadvantages, the device is running continuously, any memory leak will be magnified, the device
becomes sensitive to serialisation issues (if not giving time to process all pollings)

Pushing events manually from the device code
Typically updating attribute values from a single command execution, Update(), or a background thread.
It can be combined with the previous approach
Not as easily configurable from Jive
Even if using a background thread, it does not escape serialization completely (event pushing is blocking)

Client polling vs. server polling vs. pushing events

34

Slide /

Try to subscribe to an attribute

35

tango.utils.EventCallback docs

https://pytango.readthedocs.io/en/latest/utilities.html#tango.utils.EventCallback

Slide /

Could enable polling from
client side, or in device
server code.

Example of server code:

File: training/server/ps0b.py

Add polling

36

https://gitlab.com/tango-controls/pytango/-/blob/21b0688db6875ba92963747fae610df9c9bdcc1d/examples/training/server/ps0b.py

Slide /

Subscribe to an attribute

From the ipython client session:

Kill the old device and start the new device: ps0b.py

Immediate callback, using a
synchronous attribute read

Other events via ZeroMQ,
every 3 seconds, in this case

37

Slide /

Custom event callback function

If we kill the device server:

38

Slide /

Custom event callback class

If we kill the device server:

39

Slide /

In init_device:
self.set_change_event("voltage", True, False)

self.set_archive_event("voltage", True, False)

In your methods:
 self.push_change_event("voltage", value) # can include [timestamp, quality]

self.push_archive_event("voltage", value) # can include [timestamp, quality]

40

Pushing events manually

implemented: True: pushing is enabled

detect: False: Tango ignores change-event criteria

Can also push a tango.DevFailed exception object

Slide /

Miscellaneous

41

Slide /

Single attribute only:
 tango.AttributeProxy

Many devices simultaneously:
 tango.Group

can build complex hierarchy (nested groups)
can read/write attributes
can send commands with same or different params

Note: These clients don’t support the high-level API

Other generic clients

42

https://pytango.readthedocs.io/en/latest/client_api/attribute_proxy.html
https://pytango.readthedocs.io/en/latest/client_api/group.html

Slide /

“Friendly” client to the DatabaseDS: tango.Database

Database client

43

Default is TANGO_HOST env var, but can
provide (host, port), or even a file
name.

https://pytango.readthedocs.io/en/latest/database.html

Slide /

Enumerated types - device

Use enum class directly, rather than
dtype="DevEnum",
enum_labels=["INDEPENDENT", "SYNCED"]

File: training/server/ps0c.py

44

https://gitlab.com/tango-controls/pytango/-/blob/21b0688db6875ba92963747fae610df9c9bdcc1d/examples/training/server/ps0c.py

Slide /

Enumerated types - client

45

Slide /

Logging decorators

Log entry and exit at debug level

Log entry and exit at info level

Others: @WarnIt(), @ErrorIt(), @FatalIt(), @LogIt()

https://pytango.readthedocs.io/en/latest/server_api/logging.html

46

https://pytango.readthedocs.io/en/latest/server_api/logging.html

Slide /

Logging decorators

Show info logs on console

Show debug logs on console

Show all logs,
including all admin device
CORBA calls, events, etc.

47

Slide /

Also called Asynchronous PyTango.

Checkout the docs: pytango.readthedocs.io/en/stable/green_modes/green.html

tango.GreenMode.Synchronous # default

tango.GreenMode.Futures

tango.GreenMode.Gevent # server serialisation disabled!

tango.GreenMode.Asyncio # server serialisation disabled!

Serialisation model details:

https://tango-controls.readthedocs.io/en/latest/development/advanced/threading.html#serialization-model-within-a-device-server

Green modes

48

https://pytango.readthedocs.io/en/stable/green_modes/green.html
https://tango-controls.readthedocs.io/en/latest/development/advanced/threading.html#serialization-model-within-a-device-server

Slide /

Asyncio client example

High-level API
(fails for attributes - bug?)

Low-level API

49

Slide /

Asyncio server example

File:
asyncio_green_mode/asyncio_device_example

50

https://gitlab.com/tango-controls/pytango/-/blob/develop/examples/asyncio_green_mode/asyncio_device_example.py

Slide /

More details

General Asyncio overview
Slides: vxgmichel.github.io/asyncio-overview
Repo: github.com/vxgmichel/asyncio-overview

ICALEPCS 2017 PyTango workshop (notes on concurrency)
Slides: vxgmichel.github.io/icalepcs-workshop
Repo: github.com/vxgmichel/icalepcs-workshop

51

https://vxgmichel.github.io/asyncio-overview
https://github.com/vxgmichel/asyncio-overview
https://vxgmichel.github.io/icalepcs-workshop
https://github.com/vxgmichel/icalepcs-workshop

Slide /

How to test?

52

Slide /

Testing with real Tango Facility

53

Slide /

Testing with DeviceTestContext

54

Slide /

Testing with MultiDeviceTestContext

55

Slide /

More details

General techniques were discussed at Tango 2020-11 Status Meeting
Slides here (backup)
Video recording here, starting at 1:02:22 mark

Take home: keep the business logic outside the Tango device

56

https://indico.esrf.fr/indico/event/49/other-view?view=standard
https://indico.esrf.fr/indico/event/49/session/4/contribution/19/material/slides/0.pdf
https://drive.google.com/file/d/1EqbjFpSOhO5pVHRVxH33Zz6OfZCh4Rzc/view?usp=sharing
https://drive.google.com/file/d/1ZdI1pMwnfTvYYq8Bh-Ps7I4vV5kvEZ4-/view?usp=sharing

Slide /

Additional resources

57

Slide /

Examples from this presentation
https://gitlab.com/tango-controls/pytango/-/tree/develop/examples/training

PyTango documentation
https://pytango.readthedocs.io

General Tango documentation
https://tango-controls.readthedocs.io

Tango community forum
https://www.tango-controls.org/community/forum/

SKAO Tango Dockerfiles:
https://gitlab.com/ska-telescope/ska-tango-images

SKAO artefact repository, for Docker images:
https://artefact.skao.int

Useful links

58

https://gitlab.com/tango-controls/pytango/-/tree/develop/examples/training
https://pytango.readthedocs.io
https://tango-controls.readthedocs.io
https://www.tango-controls.org/community/forum/
https://gitlab.com/ska-telescope/ska-tango-images
https://artefact.skao.int/#browse/search/docker=name.raw=ska-tango-images*

www.skao.int

We recognise and acknowledge the
indigenous peoples and cultures that have
traditionally lived on the lands on which our
facilities are located.

Thanks!

59

https://www.skao.int/

