
Tango Design
Patterns

Tango Workshop @ ICALEPCS 2021

14 October 2021

Andy Götz (ESRF)

Why Patterns ?

“What's new here is that there's nothing new here.
Patterns are about what works.”

“Patterns give us a way to talk about what works.”

—Brian Foote, pattern writer (1997, ix)

A UML Pattern Language by Paul Evitt

The original Patterns Book

Software Patterns Books

Software Patterns websites

https://www.martinfowler.com/articles/writingPat
terns.html

https://wiki.c2.com/?PortlandPatternRepository

http://hillside.net/index.php/a-pattern-language-
for-pattern-writing

https://www.martinfowler.com/articles/writingPatterns.html
https://wiki.c2.com/?PortlandPatternRepository
http://hillside.net/index.php/a-pattern-language-for-pattern-writing

Tango Patterns Language

1. Context

2. Problem

3. Forces / Constrains

4. Solution

5. Examples

Context

• You are an experienced practitioner in your field. You have noticed
that you keep using a certain solution to a commonly occurring
problem. You would like to share your experience with others.

Problem

• How do you share a recurring solution to a problem with others so
that it may be reused?

Forces / Constrains

• Keeping the solution to yourself doesn't require any effort
• Sharing the solution verbally helps a few others but won't make a big

impact in your field.
• Writing down your understanding of the solution is hard work and requires

much reflection on how you solve the problem.
• Transforming your specific solution into a more widely applicable solution

is difficult.
• People are unlikely to use a solution if you don't explain the reasons for

using it.
• Writing down the solution may compromise your competitive advantage

(either personal or corporate.)

Solution

• Write down the solution using the pattern form. Capture both the
problem and the solution, as well as the reasons why the solution is
applicable. Apply Mandatory Elements Present to ensure that the
necessary information is communicated clearly. Include Optional
Elements When Helpful to capture any additional useful information.
Distribute the resulting pattern to the largest audience you feel it
could help that does not compromise your competitive advantage.
Often, this means publishing your patterns exclusively within your
company via Intranets or company journals.

Pattern #1 – SimpleDevice

SimpleDeviceClass (Python/ C++ /
Java) e.g. implements hardware

access

SimpleDevice
(object) e.g.

hardware
address

Simple Device
hardware e.g.
Powersupply

IS-A Class

HAS-A Object

Communication protocol

SimpleDeviceServer (process)

1. Context
need to remotely control some hardware in a lab and/or integrate into an
existing control system to monitor it

2. Problem
Equipment is in a remote location or needs to be accessed from another
software language e.g. Python / Matlab, and controlled with

3. Forces
Choose the right language
Define Attributes, Commands and State machine

4. Solution
Write a simple device server in Python/C++/Java

5. Examples
PowerSupply, StepperMotor, VacuumGauge, Thermocouple, …

Pattern #1 – SimpleDevice

Pattern #2 – MultiSimpleDevice

SimpleDeviceClass (Python/ C++ /
Java) e.g. implements hardware

access

SimpleDevice
(object) e.g.

hardware
address

Simple Device #1
hardware e.g.
powersupply

Simple Device #2
hardware e.g.
powersupply

SimpleDevice
(object) e.g.

hardware
address

SimpleDeviceServer (process)

Pattern #3 – MultiDeviceClass

OneDeviceClass (Python/ C++ /
Java) e.g. implements hardware

access

DeviceOne
(object) e.g.

channel
address

Device2 hardware
e.g. serial line

DeviceTwo
(object) e.g.

baudrate

TwoDeviceClass (Python/ C++ /
Java) e.g. implements hardware

access

MultiDeviceServer (process)

Device1 hardware
e.g. powersupply

Pattern #4 – MultiChannelDeviceClass

MultiChannelDeviceClass
(Python/ C++ / Java) e.g.
implements collection of

channels

MChDevice
(object) e.g.

list of
channels

Device2 hardware
e.g. serial line

SChDevice
(object) e.g.

address

SingleChannelDeviceClass
(Python/ C++ / Java) e.g.

implements hardware access

MultiChannelDeviceServer (process)

Device1 hardware
e.g. powersupply

SChDevice
(object) e.g.

address

SChDevice
(object) e.g.

address

Level1DeviceServer (process)

Pattern #5 – MultiLevelClass

TopLevel
Device1

TopLevel
Device2

TopLevelDeviceServer (process)

Level2
Device1

Level2
Device2

Level2DeviceServer (process)

DeviceN
(hardware)

DeviceN+1
(hardware)

TopLevel1DeviceClass

TopLevel2DeviceClass

Level2_1DeviceClass

Level2_2DeviceClass

Pattern #6 – FamilyOfComplexDevice

FamilyofDeviceClass (Python/ C++ /
Java) e.g. Lima detector(s)

Device #1
(detector 1)

e.g.
hardware
address

Device #2
(detector 2)

e.g.
hardware
address

Library for
accessing
family of
complex

devices e.g.
Lima library

with
plugins

Device1 hardware
e.g. powersupply

Device1 hardware
e.g. powersupply

FamilyofDeviceServer (process)

Pattern #7 – MailboxDevice

MailboxDeviceClass (Python/ C++ /
Java) e.g. high-end Powersupply

Device #1
PowerSupply
e.g. channel

address

Device #2
Powersupply
e.g. hardware

address

Library for
accessing
complex

devices or
algorithms

e.g.
powersupply

or API

Device1 hardware
e.g. powersupply

MailboxDeviceServer (process)

Device2 software
e.g. algorithms

Pattern #8 – RootDeviceClass

RootDeviceClass e.g.
implements a common behavior

for all devices

DeviceOne
(object) e.g.

channel
address

Device2 hardware
e.g. serial line

DeviceTwo
(object) e.g.

baudrate

PowerSupplyDeviceClass
(Python/ C++ / Java) e.g.

implements hardware access

ADeviceServer (process)

Device1 hardware
e.g. powersupply

SerialLineDeviceClass (Python/
C++ / Java) e.g. implements

serial line access

Anti-Patterns

1. IgnoreState
Device has no state machine
State is not implemented in the State attribute

2. DeleteStaticAttributes
Static attributes are treated as dynamic attributes

3. CreatorDestroyer
Device is created for very brief period (< 1s)

4. AttributesAsCommands
Control points are implemented as Commands

Conclusion

1. There are many useful Tango Patterns in use at
different sites

2. This talk has presented a few but would like to gather
more from the community and extend them to more
complex patterns / contexts

3. Next steps: include these and your patterns in the
Tango documentation

