
Kubernetes at SKA

Matteo Di Carlo (INAF-OAAB)

TANGO-Workshop @ICALEPCS 2021

About me

• Matteo Di Carlo (matteo.dicarlo@inaf.it)

• Working for INAF-OAAB since 2014

• Since 2015 in the SKA project

• Software engineer, in SKA part of the system team and
coordinator of the cop-tango community

• https://orcid.org/0000-0002-3903-9637

ska-tango-examples repository

Demonstrates how to structure a project that provides some
simple Tango devices coded in PyTango with kubernetes.

• Development and testing done with k8s

• Environments and test results are completely reproducible and
independent of host environment.

• Many authors:

• https://gitlab.com/ska-telescope/ska-tango-examples/-/graphs/master

• The code shown in this presentation is here: https://gitlab.com/ska-
telescope/ska-tango-examples/-/tree/TANGO-workshop

More info:

https://docs.google.com/pr

esentation/d/1qA7twT2V

QGG5S2nYKABj3hD-

9y9e1L7LvvvqMrictgo/edit

?usp=sharing

https://gitlab.com/ska-telescope/ska-tango-examples/-/graphs/master
https://gitlab.com/ska-telescope/ska-tango-examples/-/tree/TANGO-workshop
https://docs.google.com/presentation/d/1qA7twT2VQGG5S2nYKABj3hD-9y9e1L7LvvvqMrictgo/edit?usp=sharing

Requirements

• Install docker:

• Follow the instructions available at
ttps://docs.docker.com/get-docker/

• Install minikube:

• Follow the instructions available at https://gitlab.com/ska-
telescope/sdi/deploy-minikube/

• Optionally, install host OS dependencies:

• Compile the TANGO framework: https://gitlab.com/tango-
controls/cppTango/-/blob/main/INSTALL.md

https://docs.docker.com/get-docker/

SKA-tango-images - Containerized environment for
TANGO-controls application

Please note this
is only a partial
set of container

images present in
the repository.

Kubernetes and Helm

• Kubernetes (k8s) for container orchestration (kubernetes.io)

• Service == TANGO Device Server

• Helm for packaging SKA k8s applications (helm.sh)

• Tool for managing Kubernetes charts

• Chart is a package of pre-configured Kubernetes resources (set of
information for running a Kubernetes application)

For each SKA element there must be an helm chart for running it in k8s!

Use of Makefiles for lifecycle management (one command for build images, start
application using helm, test application and clean)!

We are working in this area
at the moment for

standardising a common
set of Makefile targets. This
will bring every repository

to have a standardized
structure (set of folder,

common files, etc.)

https://kubernetes.io/
https://helm.sh/

Architecture for integration (with Helm)

•Helm has the concept of dependency

•An helm chart can have one or more sub-charts

•The integration of SKA elements can be done with this
concept

Umbrella charts

•Operational aspects of using dependencies: the sub-
charts are

•aggregated into a single set; then

•sorted by type followed by name; and then

•created/updated in that order.

For every SKA
element, there is

at least an
umbrella chart
for integration

testing

Live demo

Development of a device step 1: POGO

•make start_pogo

•Remember to export the DISPLAY and Xauthority
environment variables

•In the home folder there folder where you started Pogo

•Generate the device

Development of a device step 2: coding & testing

•Create a virtualenv

•Write your device and create a test (test-drive
approach)

•Remember to lint:

•make python-format && make python-lint

•Use DeviceTestContext or MultiDeviceTestContext

•make python-test

The command «make python-test» run on the

host machine. Some tests can fail depending

on the OS (i.e. windows). If it fails, the

alternative is to run it on a container which

won’t fail. The command is «make

pipeline_unit_test»

Development of a device step 3: deployment

•In order to install the examples, two charts have been
created: one called ska-tango-examples which is the
real application and the umbrella chart, called test-
parent, used for testing.

•The ska-tango-examples uses the ska-tango-base chart
for setting up the TANGO eco-system (mysql database
and databaseds device) and the ska-tango-util library
chart which helps in the definition of the TANGO device
servers

• More information on: https://gitlab.com/ska-telescope/ska-tango-images

How does it work?

•Define the device server and devices in a yaml file
inside the folder data according to the documentation

•Reference that file in the main values file

•Use it in the template deviceservers.yaml

•It is possible to define dependency which will create one
init container for each of them

Development of a device step 3: deployment

Development of a device step 4: install on minikube

•«make oci-build» builds the container image (with
docker)

•«make install-chart» installs the deployment

Development of a device step 4: wait and watch

•«make wait» wait for all pods to be running

•«make watch» to see what’s happening

Development of a device step 5: tests against a real
deployment

• Done with the “make test-deployment” target in the Makefile

• The make test:

• compress the tests folder

• create a new pod (using the image of the repository)

• run the pytest with the true-context option

• once done, it retrieves the files generated.

• Please note that some tests can be done only with a real
deployment and therefore they are marked as “post-
deployment” tests.

Development of a device step 6: clean

•«make uninstall-chart»

•«make reinstall-chart» if needed

Development of a device: debugging

•The ska-tango-examples chart is deployed with the
debugger enabled (parameter DEBUG in values.yaml
file)

•K8s allows to forward a port from the local machine to a
pod (the container where the device server is running)

•kubectl port-forward pod/tabata-tabata-0
12345:5678 -n ska-tango-examples

•Then we can make use of the vscode attach to remote
process (library debugpy)

Debugging consideration debug_this_thread

• A standard TANGO Device server does not use Python threads so most
method calls are not debuggable unless we make them aware of the
debugger.

• In every method we want to debug we must add the following line of code:

• debugpy.debug_this_thread()

• https://github.com/microsoft/debugpy/wiki/API-
Reference#debug_this_thread

• Makes the debugger aware of the current thread, and start tracing it. Must
be called on any background thread that is started by means other than the
usual Python APIs (i.e. the threading module), in order for breakpoints to
work on that thread.

Gitlab pipeline

More information:

14:00-14:15 UTC- TUBL04

CI-CD Practices at SKA

Oral presentation

www.skao.int

We recognise and acknowledge the

Indigenous peoples and cultures that have

traditionally lived on the lands on which

our facilities are located.

Thanks for your attention

http://www.skao.int

