HarmonLIP Workshop MAX IV / Lund, 10-12 October 2022

Harmonic RF project for ESRF-EBS

Lee Carver, Alessandro D'Elia, Jörn Jacob, Vincent Serrière, Simon White

The European Synchrotron

→ Part of this work has been performed within the frame of the WP2 collaboration among ESRF, HZB, KEK, PSI & SOLEIL

ESRF 1992: FIRST 3rd GENERATION SYNCHROTRON LIGHT SOURCE

= 844 m

Circ

6 GeV Storage Ring 200 mA

ooste

Up to 100 keV X-ra

Existing Storage Ring

1992:commissioning1994:external userssince then:

- many upgrades
- brilliance increase by about a factor 1000

2020 New Extremely Brilliant Source: EBS

- First 4th generation high energy light source
- further brilliance increase by a factor 40
- Substantial gain in coherence

ESRF

EBS RF SYSTEM LAYOUT

GRADUAL IMPLEMENTATION OF 10 SSA (EACH 110 KW RF, MAX 250 KW AC)

LIFETIME IN EBS

The European Synchrotron

Harmonic RF system at 1.41 GHz

- Bunch lengthening by a factor 2.5 to 3
- 1st Priority for high I / bunch (16b and 4 x 10 mA)
- Reduced Touschek scattering, IBS and microwave instability:
 - > Increased lifetime \rightarrow less frequent injections, reduced loss rate and radiation load
 - Improved overall stability
 - Room for smaller In-Vacuum ID gaps
 - alleviate possible impact from future lattice developments like mini-beta straights
 - Reduced emittance and energy blow up
- Reduced heat-load and stress of critical chambers, like ceramic chambers or In-Vacuum IDs
 - → Today maximum 35 mA in 16 bunch and 20 mA in 4 bunch operation until installation of new ceramic Kicker chambers

2nd step: for multibunch operation

- Intrinsically less Touschek scattering, very low IBS, no MWI
- 7/8 filling \rightarrow strong transient beam loading (TBL) almost impossible to avoid
 - > Phase transients partly spoil bunch lengthening
 - \Rightarrow Minimize R/Q of harmonic cavities \Rightarrow E020 mode cavity

→ E020 mode cavity initially proposed by Naoto Yamamoto / KEK

The European Synchrotron

4TH HARMONIC 2-CELL E020 MODE CAVITY – IN HOUSE DEVELOPMENT

Active NC cavity design well advanced:

- ✓ 2 coupled and 2 uncoupled cells considered
- ✓ Freq = 1.409 GHz
- ✓ R/Q = 44.5 ohm/cell
- ✓ Q0 = 30500
- ✓ Smart HOM & LOM dampers almost not affecting Q0 of E020 mode
- ✓ Elaborate water cooling
- ✓ Aperture coupler: coupling $\beta = 1$
- ✓ Vacuum ports on HOM dampers also preserving Q0

Ferrite LOM (E010 mode) & HOM absorber

H-Field

[Alex D'Elia, Vincent Serrière]

The European Synchrotron

ACTIVE HARMONIC SYSTEM - POWER REQUIREMENTS

SIMULATION WITH FERRITE INSTEAD OF PML REVEALED NEW CHALLENGE

Replacing PML with real ferrites in the 3D model:

- revealed small azimuthal modulation of fields of TM020 / π -mode of coupled cells
- → coupling to higher order waveguide TE mode in coaxial HOM/LOM damper reaching ferrite ring
- \rightarrow Reduction of Q by a factor 2 !
- 2 investigated possibilities to mitigate this problem:

Remarks:

- 1. Additional choke to stop TE propagation
- 2. Initial RF performances recovered
- Power density at the ferrite after optimization ~10W/cm² (15W/cm² is the limit given by the manufacturer: being checked on teststand);
- 4. Cavity slightly longer (by ~80mm in total).

Possibility 1

H-Field penetration in the original structure

Coupling lots moved towards cav' axis

Remarks:

- 1 additional HOM damper per cell to stay within LCBI threshold
- 2. Q factor ~5% lower because of the HOM dampers
- Power density at the ferrite ~15W/cm² (no optimizations done yet);
- 4. Review of mechanical integration of the disk needed
 - Cavity length does not change Possibility 2

CELL 25 WITH 3 MAIN RF AND 3 HARMONIC RF CAVITIES

STATUS

Status and objectives:

- Challenging design of 4th harmonic cavity goes on: → Vincent Serrière's presentation of latest findings
- Launch procurement of cavity and 1.4 GHz SSA hopfully early 2023, including prototype phases
- Why not 3rd harmonic at 1.057 GHz ?
 - Existing 1.3...1.4 GHz SSAs was the main reason to go to 1.4 GHz fro an active system, now also high power transistors around 1 GHz
 - As suggested by Patrick Marchand: we could now also envisage a 3HC system
 - We would need 1.6 to 1.8 MV at 1057.11 MHz for 5.5 to 6.0 MV at 352.37 MHz,
 - Cavities expected to have R/Q = 44 Ohm, $Qo \approx 40000$
- Collaborations :
 - Particle tracking simulations under way in a collaboration of ESRF RF and Beam Dynamics groups: → Lee Carvers's presentation
 - International exchange and bench marking → WP2 collaboration ESRF, HZB, KEK, PSI & SOLEIL, HarmonLIP
 - Planned collaboration with ESRF Detector & Electronics group for the development of a fast digital RF feedback system built with ESRF FPGA controllers
- Remarks on Active vs Passive and Robinson DC \rightarrow J. Jacob's dedicated presentation
- Implementation on EBS possibly in about 3 years

MANY THANKS FOR YOUR ATTENTION

