The ASTRID2 3rd Harmonic Cavity

Jørgen S. Nielsen Center for Storage Ring Facilities (ISA) Aarhus University Denmark

ASTRID2 3rd harm. cavity

- Copy of MAX IV cavity, except 315 MHz
 - Cavity stub end diameter changed
 - Thanks to Åke and MaxLab
- Installed March 2015
 - Fixed cooling water temperature of ~20°C Before installation

 (at the time)

Installed in the ring

Benefits (at installation time)

Better lifetime

- Before: 1.4 h @ 80 mA and 1.0 h @ 120 mA
- After: 2.0 h @ 80 mA and 1.85 h @ 120 mA
- More stable beam
 - Moved instabilities to higher frequencies
 - SR diagnostic camera (in control room) showed a more stable beam (and happy users)
- Good tuning range is limited
 - Was for long using a detuning of around +400 kHz (possible tuning range is ±500 kHz).
 - "Theoretical optimum" (flat potential) should be +160 kHz
 - Drop in cavity voltage and outgassing 250-300 kHz

LCBI

After installation of 3rd cavity Longitudinal Coupled Bunch Instability (LCBI) mode spectra changed

Before Landau cavity (24 mA) Dominant mode: 9

150304d-DecavingBeam\BeamModeUBXsum_20150304T180352_24mA_mode_amplitude: 0.25 0.2 e amplitude [ns] 0.12 0.1 mode 0.05 15 mode number

With Landau cavity (120 mA) Dominant mode: 15

150924a-UserBeam120mA\BeamModeUBXsum 20150924T103653 122mA mode amplitude: 0.25 0.2 mode amplitude [ns] 0.05 marmonLiP workshop (11-12/10 2022), ASTRID2

4

Strong HOM at rev. harm. 177

 Direct sampling of Landau cavity pickup signal with (fast) scope and then FFT

Beam has been accumulated at a cavity detuning of +400 kHz and a cavity temperature of ~20°C

Reduction in fundamental

 Scanning the cavity detuning yields a dip in amplitude of the fundamental

Beam has been accumulated at a cavity detuning of +400 kHz

Accumulate at various detuning's

Cavity behavior depends on "history"

Beam accumulation

- Cavity amplitudes as function of beam current
 - Amplitude of fundamental (blue) increases as detuning is lowered
 - But amplitude of RevHarm177 (red) are more irregular, but with a tendency that smaller detuning give much more amplitude of harmonic

Synchrotron frequency

 Synchrotron frequency gives a measure of total voltage seen by the beam (or rather slope around synchronous point)

Temperature dependance

 Have recorded all resonances with a network analyzer for various cavity temperatures (baking the cavity)

Rev. Harm. 177 20°C, detune setpoint = 400 kHz

Increased cavity temperature

- In August 2022, a small (borrowed) cooler/heater (10-40°C) was installed for our 3rd harm. cavity
- By raising the 3rd harm. cavity temperature (30-35°C) we can operate stable at smaller main resonance detuning ("jumping" below the RevHarm177 resonance)
 - Beam lifetime is better (~2.3 h @180 mA versus ~2.0 h earlier)
 - with a smaller and more stable horizontal beam size
 - The range with stable beam is (still) rather narrow
 - Unless careful with temperature, we see an increase in vertical beam size
 - It seems that LCBI modes are damped even more, but measurements are uncertain
 - Bunches are not always nice gaussians, so (automatically) finding the bunch crossing time is not always easy

Sync. freq. vary cav. temperature

 Synchrotron frequency measurements are consistent for various cavity temperatures

Summary

- At a Landau cavity temperature of 20°C beam parameters (lifetime, beam sizes, ...) are only stable in a rather narrow range around a cavity detuning of 400 kHz
 - With a beam lifetime of ~2.0 h, and some jitter in horizontal beam size
- At elevated temperatures (30-35°C) parameters can be found which give better beam lifetime and more stable beam
 - Presently beam lifetime is ~2.3 h, with a smaller and more stable horizontal beam
 - Vertically beam size is as earlier (at the right settings)
- We will have to build a dedicated cooler/heater system, which can go higher up in temperature (20-70°C)
 - We should expect some need for conditioning

Thank you for your attention

Extra/spare slides

LCBI, 180 mA, Landau cav. at 20°C, detune 400 kHz

16

LCBI, 180 mA, Landau cav. at 30°C, detune set 320 kHz (actual 240 kHz)

Longitudinal coupled bunch instability All bunch positions can be found by finding all zero crossings We can follow the oscillation of each bunch

Before Landau cavity 10 mA

Synch. Freq. Vs cavity detuning

• General trend is lower sync. freq. for lower detuning, but with other effects also taking place

Other parameters (cav. at 20°C)

Beam lifetime

(minimum) Bunch length

ASTRID2

20

ASTRID2

- ASTRID2 is since 2013 the new synchrotron light source in Aarhus, Denmark
- ASTRID2 main parameters
 - Electron energy:
 - Emittance: 12 nm
 - Beam Current: 200 mA
 - Circumference: 45.7 m
 - 6–fold symmetry
 - lattice: DBA with 12 combined function dipole magnets

580 MeV

- Integrated quadrupole gradient
- 4 straight sections for insertion devices
- Using ASTRID as booster (full energy injection)
 - Allows top-up operation

ASTRID2 Layout

Landau cavity

- Installed March 2015
- Prebaked (130°C)
- Preconditioned with 100 W (~20 kV)
 - Multipactoring around 10 W (200 V)

Installed in the ring

Longitudinal coupled bunch instability

- We have strong longitudinal coupled instability
- Mode amplitudes are up to ~0.1 ns
 - 10 ns bunch separation
- Threshold (beam current) is low (a few mA)
- Through dispersion it gives strong horizontal oscillations
 - Clearly visible on our SR diagnostic camera (with short exposure time)
 - Dispersion = 0.18 m

Longitudinal coupled bunch instability

- Landau cavity is damping the instability a little, and it changes which modes are the strongest
 - We can find a Landau detuning where the beam appears stable on our diagnostic camera
 - We are moving the oscillations higher up in frequency (where they are less apparent)

Before Landau cavity (24 mA) Dominant mode: 9

With Landau cavity (120 mA) Dominant mode: 15

