HarmonLIP 2022, 11-12 October 2022, MAX IV

Status and development of harmonic-cavity projects at KEK

Naoto Yamamoto,

Shogo Sakanaka, Daichi Naito, Takeshi Takahashi (KEK) Takaaki Yamaguchi (SOKENDAI)

15 minutes + 5 minutes for questions

Present and future Photon Factory

Present and future Photon Factory

PF 2.5 GeV ring (1983~)

PF-AR (6.5 GeV) (1987~)

Beam energy	6.5 GeV			
Beam current (with single bunch)	₅₀ mA			
Circumference	377 m			
Beam emittance ϵ_{x0}	293 nm⋅rad			
Synchrotron radiation loss per tuen U_0	6.66 MeV			
Total accelerating voltage V _c	16 MV			

Beam energy	2.5 GeV		
Beam current	450 mA		
Circumference	187 m		
Beam emittance ϵ_{x0}	34 nm⋅rad		
Syncorotron radiation (per electron, per turn) U_0	399 keV		
Total accelerating voltage V _c	1.7 MV		

At now, There is no HC in the both rings.

Present and future Photon Factory

PF 2.5 GeV ring (1983~)

2.5 GeV

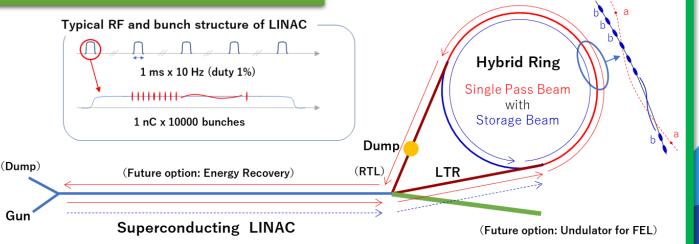
450 mA

187 m

34 nm rad

399 keV

1.7 MV


PF-AR (6.5 GeV) (1987~)

Beam energy	6.5 GeV			
Beam current (with single bunch)	₅₀ mA			
Circumference	377 m			
Beam emittance ϵ_{x0}	293 nm⋅rad			
Synchrotron radiation loss per tuen U_0	6.66 MeV			
Total accelerating voltage V _c	16 MV			

Future Photon Factory (203X~)

Beam energy

Beam current

Circumference

Beam emittance ε_{x0}

electron, per turn) U_0

Syncorotron radiation (per

Total accelerating voltage

Future Light Source at KEK and HC projects

- Hybrid ring, a storage ring light source combined with a long pulsed superconducting linac, is proposed as a future(after 2030) light source at KEK.
- It is designed to be operated with the coexistence of the storage (SR) bunches b) characterized by the performance of the storage ring, and the single-pass (SP) bunches a) characterized by that of the SC linac.

Exit Slit

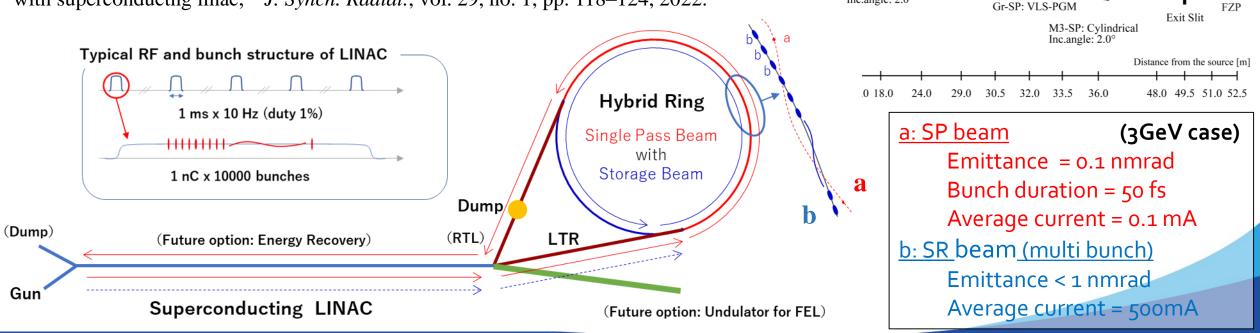
M4-SR: Spheroida Inc.angle: 1.75°

Entrance Sli

M0-SR: Cvlindrical

Inc.angle: 2.0°

M1-SP: Cylindrical


M2-SP: Plane

Inc.angle: 2.0°

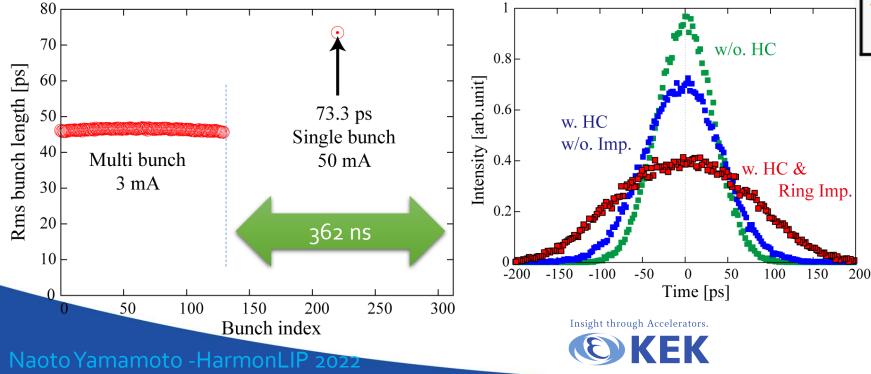
Slit

• HCs will be introduced into the storage ring.

* K. Harada, N. Funamori, N. Yamamoto *et al.*, "Conceptual design of the Hybrid Ring with superconductng linac," *J. Synch. Radiat.*, vol. 29, no. 1, pp. 118–124, 2022.

HC R&Ds

Insight through Accelerators.



HC project for PF-2.5GeV ring

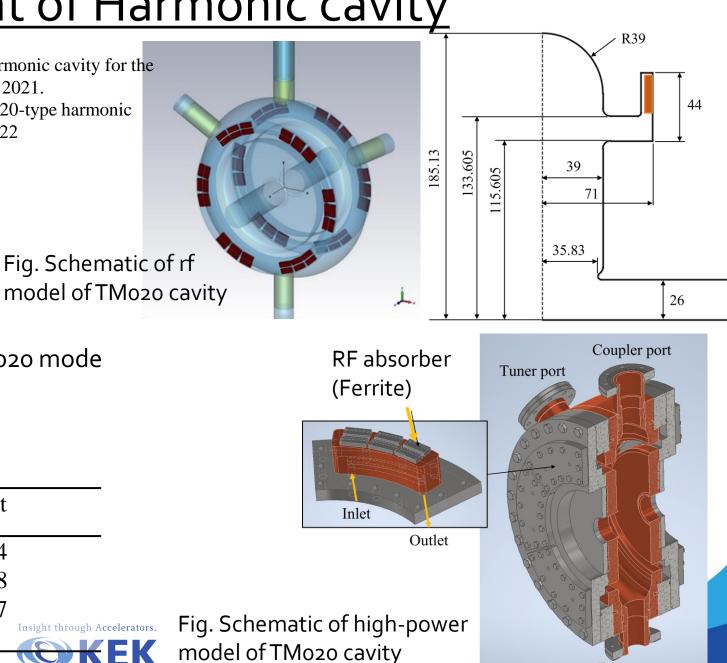
• HC for Hybrid filling operation mode

For the purpose to increase single bunch current from 30mA to 50mA, a introduction of NC-HCs is under consideration.

Bunch lengthening factor of 1.6 is expected with two NC-HCs.

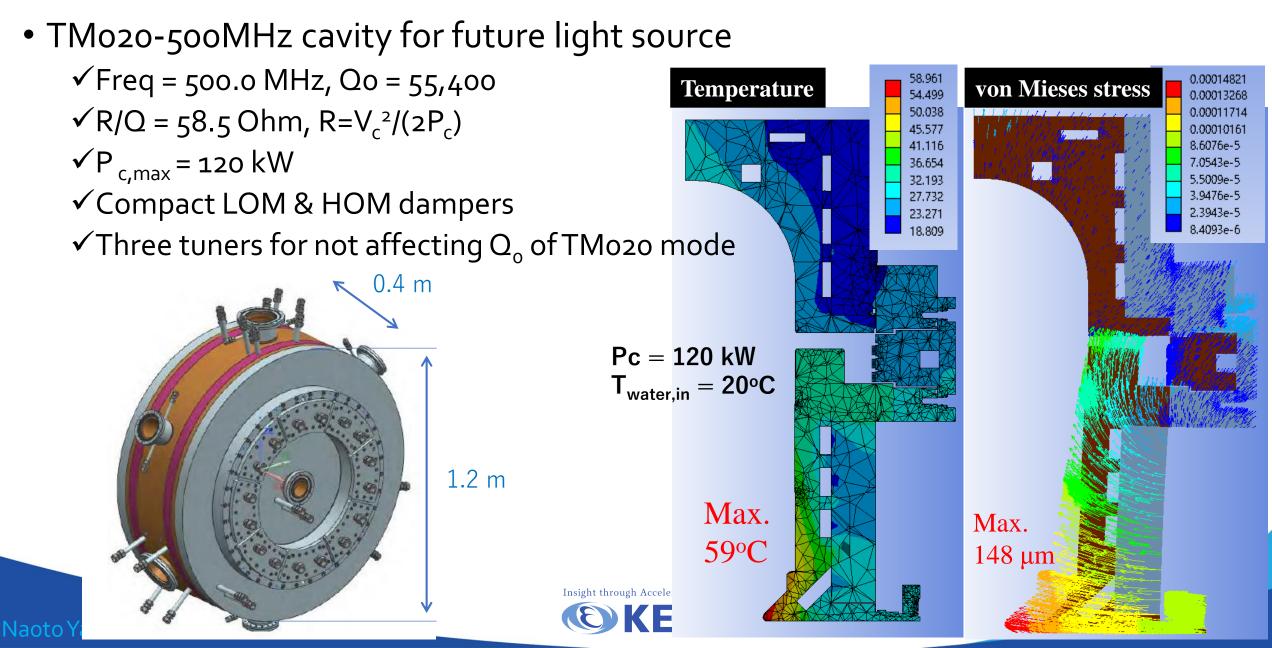
PF 2.5 GeV ring

Beam energy	2.5 GeV
Beam current	450 mA
Circumference	187 m
Beam emittance ϵ_{x0}	34 nm⋅rad
Syncorotron radiation (per electron, per turn) U_0	399 keV
Total accelerating voltage $V_{\rm c}$	1.7 MV


← Fig. Simulation (mbtrack) result for PF Hybrid operation mode.

HC project : Development of Harmonic cavity

* T. Yamaguchi et al., "Low-power test of the 1.5 GHz TM020-type harmonic cavity for the future synchrotron light sources," in Proc. PASJ2021, paper WEOA03, 2021.
* T. Yamaguchi et. al., "High-power model design of the 1.5 GHz TM020-type harmonic cavity for the future synchrotron light sources", in Proc. PASJ2022, 2022


- 1.5GHz-TMo20 cavity
 - ✓ Freq = 1.500 GHz
 - \checkmark R/Q = 34 Ohm, R=V_c²/(2P_c)
 - ✓ Q₀ = 31,500
 - ✓ Pc, max = 10 kW
 - \checkmark Three tuners for not affecting Q_ of TMo20 mode
 - ✓ Loop coupler : $\beta \sim 0.5$
 - ✓ Compact LOM & HOM dampers

	Q factors of the principal parasitic modes					
	Mode	Measurement	Target			
		-				
	TM010	34.0	38.2	< 58.4		
	TM110	23.8	30.0	< 28.8		
	TM120	40.1	67.1	< 38.7		
	TE121	3,040	4,270	< 795		
ລດ	toVaman	noto -Harmonl IP -				

Tuner port

HC project : Development of TMo20 Main cavity

HC project : Development of Broadband kicker cavity

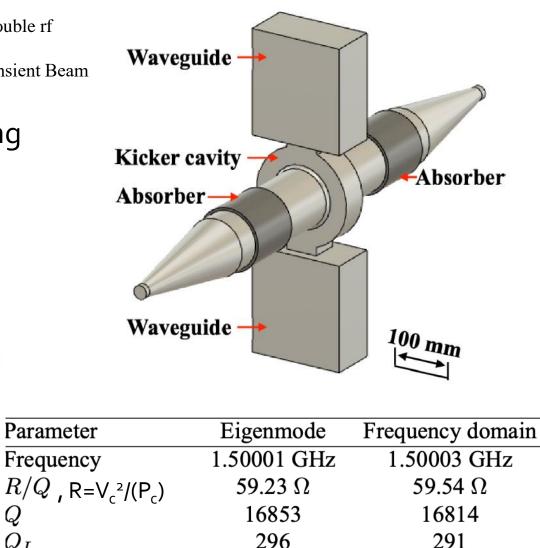
* N. Yamamoto et al., "Reduction and compensation of the transient beam loading effect in a double rf system of synchrotron light sources," Phys. Rev. Accel. Beams, vol. 21, 012001, 1 2018. * D. Naito et. al., "Design Consideration of a longitudinal Kicker Cavity for Compensating Transient Beam Loading Effect in Synchrotron Light Sources", in Proc. IPAC21, MOPAB331,2012

• A broadband kicker cavity for Transient beam loading compensation

✓ Freq = 1.50 GHz

 \checkmark Double aperture coupler for large β (~56)

Compensation


 \odot

 \odot

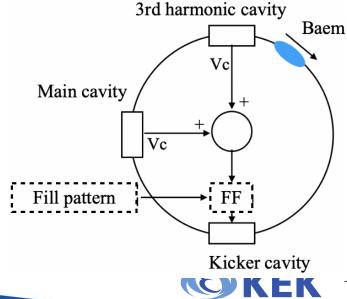
ANALY ANALY ANALY

✓ Design Kick voltage, |Vg| = 53 kV

No compensation

2.52 kW

 26.6 W/cm^2


2.53 kW

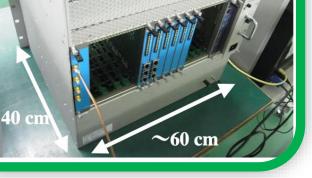
 25.1 W/cm^2

15 100 200 300 400 500 600 700 800 900 0 Bucket index

Rms bunch length [ps]

20

Q


 Q_L

 P_c

Max power density

laoto`	Yan	nam	oto	-Harr	nonL	IP	2022

C project : Development of Digital LLRF

RF REF

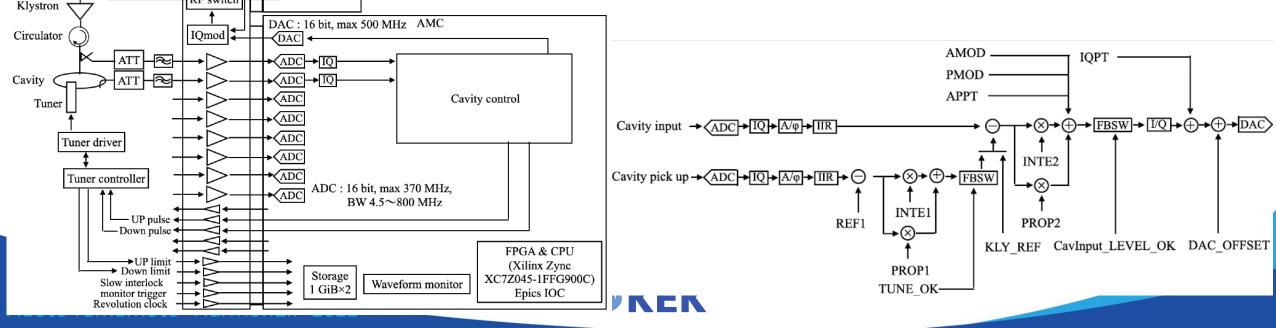
AMP

eRTM

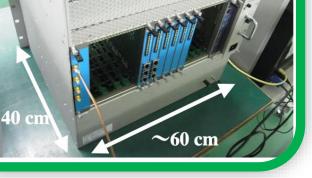
→ Distr

µRTM

RF switch


PLL

RF backplane 307.75 MHz


to ADC, DAC, FPGA * D. Naito et al., "Investigation of bunch-phase detection method compensating TBL voltages in next generation light sources," in Proc. PASJ2021, THOA01, 2021
* D. Naito et. al., "Study of LLRF upgrade at KEK-PF", in Proc. PASJ2021, THPO048 2021

- Development of PF-2.5GeV ring new Digital LLRF
 - ✓ (~2023) digital boards based on the µTCA.4 with Ig PI control, fast interlock and 2 x fs RF modulation
 - ✓ (phase II) Adaptive feedfoward RF modulation

✓ (phase II) Bunch phase detection for TBL compensation

C project : Development of Digital LLRF

RF REF

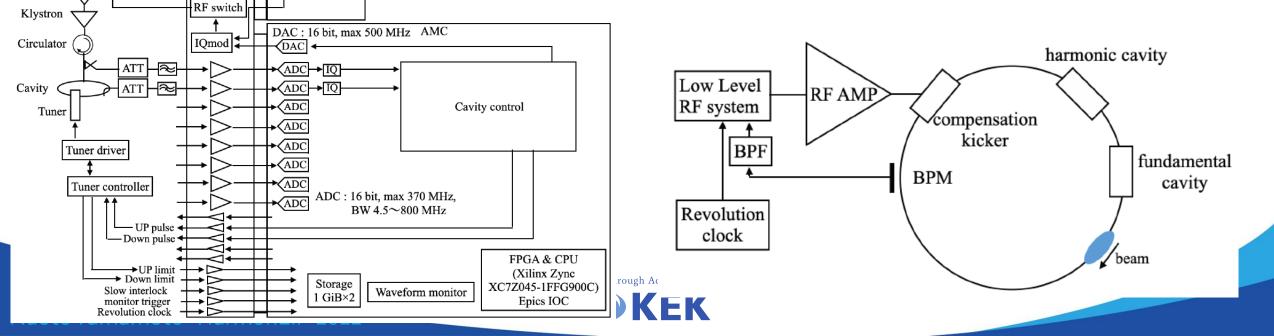
AMP

eRTM

→ Distr

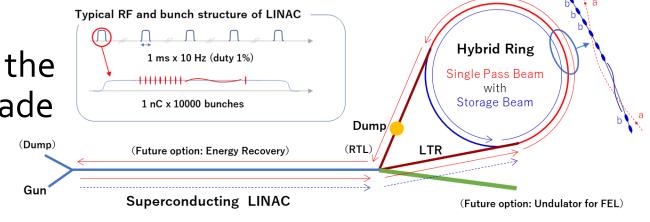
μRTM

PLL


RF backplane 307.75 MHz

to ADC, DAC, FPGA * D. Naito et al., "Investigation of bunch-phase detection method compensating TBL voltages in next generation light sources," in Proc. PASJ2021, THOA01, 2021
* D. Naito et. al., "Study of LLRF upgrade at KEK-PF", in Proc. PASJ2021, THPO048 2021

- Development of PF-2.5GeV ring new Digital LLRF
 - ✓ (~2023) digital boards based on the µTCA.4 with Ig PI control, fast interlock and 2 x fs RF modulation


✓ (phase II) Adaptive feedfoward RF modulation

✓ (phase II) Bunch phase detection for TBL compensation

<u>Summary</u>

- Hybrid ring is proposed as a future (2030~) light source at KEK.
- Until the approve and operation of the new ring (2030), R&D and PF-upgrade are planned.

- As part of PF-upgrade,
 - ✓ Replacing of current analog LLRF system to digital is underway (~2023).
 - ✓ Introduction of both HC (s) and new MCs to PF-2.5GeV ring are considered, the R&Ds are underway.
- For the future light source, R&D's for kicker cavity and it's control system are in progress.
 - ✓ Design and low-level-model study of the 1.5GHz Kicker cavity.
 - \checkmark Conceptual design of Adaptive feedforward system and Bunch phase monitor

