HarmonLIP Workshop MAX IV / Lund, 10-12 October 2022

Passive vs Active Systems, DC Robinson, DLLRF Jörn Jacob

The European Synchrotron

→ Part of this work has been performed within the frame of the WP2 collaboration among ESRF, HZB, KEK, PSI & SOLEIL $V_{acc}(\phi) = V_{c} \sin(\phi_{s} + \phi) + V_{h} \sin(n\phi_{h} + n\phi)$

Optimum Working point (1st & 2nd derivatives = 0):

$$\begin{split} \varphi_{s} &= \pi - \arcsin[n^{2} / (n^{2} - 1) \ U_{0} / V_{c}] \\ V_{h,opt} &= sqrt[\ V_{c}^{2} / n^{2} - U_{0}^{2} / (n^{2} - 1)] \\ \varphi_{h,opt} &= (1/n) \arcsin[- \ U_{0} / (V_{h,opt} \ (n^{2} - 1)] \end{split}$$

For instance 4th harmonic RF for the ESRF:

$$\begin{split} &U_0 = 2.52 \text{ MeV} / \text{ turn (without ID = worst case)} \\ &V_c = 6.0 \text{ MV} \\ &\varphi_s = 153.38 \text{ deg} \\ &V_{h,opt} = 1.35 \text{ MV} \\ &n\varphi_{h,opt} = -7.14 \text{ deg} \end{split}$$

Principle: 4th harmonic RF system for bunch lengthening

PASSIVE NC / SC HARMONIC CAVITY

Passive NC harmonic cavity :

- MAXIV, Solaris: 3 x 100 MHz \checkmark
- ALS: 3 x 500 MHz \checkmark
- BESSY: 3 x 500 MHz √

Pros:

- Simple, most economic solution
- $V_{\rm h}$ driven by the beam ٠
- Only f_{res} tuning to obtain desired $V_{h} = f(Ibeam)$ ٠
- V_b phase follows beam phase ٠
 - \Rightarrow no phase tuning required
 - \Rightarrow no DC Robinson problem

Cons:

- Low total impedance \rightarrow only for high current operation ٠
- Low $Q \rightarrow V_{h \text{ opt}}$ achievable if enough total current, but not ٠ ∮_{h,opt} :
 - \rightarrow i.e.: cancelation of 1st derivative possible, but not 2nd derivative
 - \rightarrow nevertheless, significant bunch lengthening achievable
- High total $R/Q \rightarrow$ Strong phase transients ~ R/Q٠

Passive SC harmonic cavity :

- SLS. Elettra: 3 x 500 MHz \checkmark
- APS: 4 x 352.2 MHz, under development \checkmark
- SOLEIL II: possibly √

Pros:

- Almost purely inductive,
 - $\Rightarrow \phi_{\rm h} = 0$ close to $\phi_{\rm h opt}$!
 - \Rightarrow No beam power loading
 - \Rightarrow V_{h opt} easily achievable down to low beam current
- Only f_{res} tuning to obtain desired $V_h = f(Ibeam)$
- V_b phase follows beam phase
 - \Rightarrow no DC Robinson problem
- Note: APS project foresees power coupler to slightly load the SC cavity and achieve also $\phi_{\rm h} = \phi_{\rm h opt}$
- Low R/Q, \rightarrow minimize phase transients ٠

Cons:

- Operation of SC-RF technology, Cryoplant
 - \rightarrow Operation requires more financial and manpower resources than NC cavities
 - \rightarrow Larger risk of down time

ACTIVE NC HARMONIC CAVITY

Active NC harmonic cavity :

- ✓ ALBA, BESSY, DESY project: 3 x 500 MHz scaling of E010 EU cavity in test at BESSY
- ✓ KEK: development of 3 x 500 MHz E020 cavity
- ✓ ESRF: development of 4 x 352.37 MHz E020 cavity

Pros:

- Any Vh and ϕ_h can easily be set for any current
- Allows bunch lengthening for high and low current / few bunch filling
- Still reasonable number of cavities
- E020 cavities: similar R/Q as SC cavities
- Real alternative to SC cavities

Cons:

- Lacking operational experience
- DC Robinson stability needs to be addressed
- Requires high power RF amplifiers

GENERAL STABILITY

Different configurations are being evaluated by the HarmonLIP community w.r.t. stability:

- By beam tracking simulations
- When possible: by experiments on existing systems
- \rightarrow See other presentations

Coming slides \rightarrow some considerations on:

- Robinson DC for active harmonic RF systems
- Possible active control

4TH HARMONIC 2-CELL E020 MODE CAVITY – ESRF IN HOUSE DEVELOPMENT

Active NC cavity design well advanced:

- ✓ 2 coupled and 2 uncoupled cells considered
- ✓ Freq = 1.409 GHz
- ✓ R/Q = 44.5 ohm/cell
- ✓ Q0 = 30500
- ✓ Smart HOM & LOM dampers almost not affecting Q0 of E020 mode
- ✓ Elaborate water cooling
- ✓ Aperture coupler: **coupling** β = 1
- ✓ Vacuum ports on HOM dampers also preserving Q0

Ferrite LOM (E010 mode) & HOM absorber

H-Field

[E020 proposed by Naoto Yamamoto, KEK ESRF design by Alex D'Elia, Vincent Serrière]

The European Synchrotron

ACTIVE HARMONIC SYSTEM - POWER REQUIREMENTS

BEAM LOADING DIAGRAM WITH HARMONIC CAVITY FOR BUNCH LENGTHENING

 $V_{acc}(\phi) = V_{c} \sin(\phi_{s} + \phi) + V_{h} \sin(n\phi_{h} + n\phi)$

Optimum Working point $(1^{st} \& 2^{nd} \text{ derivatives} = 0)$:

$$\begin{split} \varphi_{s} &= \pi - \arcsin[n^{2}/(n^{2}-1) \ U_{0}/V_{c}] \\ V_{h,opt} &= sqrt[\ V_{c}^{2}/n^{2} - U_{0}^{2}/(n^{2}-1)] \\ \varphi_{h,opt} &= (1/n) \arcsin[- \ U_{0} / (V_{h,opt} \ (n^{2}-1))] \end{split}$$

Optimum tuning (min power) \Leftrightarrow load angle = 0:

Ψ such that $V_{gr} // V_c$ $Ψ_h$ such that $V_{ahr} // V_h$

Beware, in the vector diagram:

Main RF turns at $\phi = \omega t$ Harmonic RF at $\mathbf{n}\phi = \mathbf{n}\omega t$

Assumptions:

RF loops (Amp, Phi, tuning	slower than	Synchrotron motion	slower than	Cavity Bandwidths (main & HC)
B ≈ 1 Hz	<<	fs ≈ 1 kHz … _{II}	<<	Above $\approx 40 \text{ kHz}$

- 1. Tuning angles, generator amplitudes and phases are constant at the scale of the synchrotron motion
- 2. The beam induced voltages in the cavities follow the beam phase

$$f_s = f_{rf} x \text{ sqrt} [\alpha \mathbf{K'} / (2\pi h E_0/e)],$$
 (K'<0 <

 $C < 0 \Leftrightarrow DC$ Robinson instability)

Coming examples already shown at ESLS RF meeting at SOLEIL in November 2018

Computed for 3rd harmonic RF system (and not for actual 4th harmonic project)

Numerical integration of synchrotron equation:

- Uniform filling (no transients)
- Starting with beam phase offset by +1 or -1 deg
- Tracking V_b, V_{bh} and ϕ_{beam} turn by turn
- Checking convergence (neglecting synchrotron oscillation damping)
- No linearization !

Threshold at \approx 150 mA confirmed by numerical integration

$$\begin{split} &V_h = 1.50 \; MV \quad (\neq V_{h,opt} \;) \\ &n \varphi_h = n \varphi_{h,opt} = -12.2 \; deg \\ &5 \; cavities, \; \beta_h = 5 \\ &\rightarrow Unstable \; for \; I_{beam} > 130 \; mA \end{split}$$

Threshold at \approx 130 mA confirmed by numerical integration

For active system, Integration of synchrotron equation indicates:

- Robinson stable if Harmonic RF beam loading > Main RF beam loading
 - \Rightarrow Sufficient harmonic cavity impedance,
 - \Rightarrow Sufficient number of harmonic cavities
 - \Rightarrow Upper limit for coupling β_h

DIRECT RF FEEDBACK

Analog RF feedback on MAIN RF system:

- Gain G
- Impedance for coherent in phase longitudinal beam motion reduced by factor 1/G
- \Rightarrow Reduction of Robinson term in Eq. 1 by a factor 1/G

DLLRF SYSTEM FOR FAST DIGITAL RF FEEDBACK

1. To stabilize main RF, one can compute the optimum correction for a fast RF feedback:

$$\begin{pmatrix} \Delta I_{gr} \\ \Delta Q_{gr} \end{pmatrix} = \frac{1}{\cos \psi} \begin{bmatrix} \cos(\psi - \varphi_{tune}) & \sin(\psi - \varphi_{tune}) \\ -\sin(\psi - \varphi_{tune}) & \cos(\psi - \varphi_{tune}) \end{bmatrix} \begin{pmatrix} \Delta I_c \\ \Delta Q_c \end{pmatrix}$$

where $\psi = f(V_c, I_{beam}, N_{cav}, R_s, \beta, \varphi_{tune}), \qquad (\rightarrow \varphi_{tune} = Load angle, mostly zero)$

2. Alternative: simulate behaviour of a passive cavity

→ Feedback harmonic voltage phase to lock on beam phase

- → Results of synchrotron equation integration need to be cross-checked with particle tracking simulations
- \rightarrow The two RF feedback approaches need to be included in the simulations and checked

MANY THANKS FOR YOUR ATTENTION

