## ⇔ BESSY II





#### HOM Damping of 3rd Harmonic Copper Cavities for Active Operation in the BESSY II Storage Ring

Dr. Andranik Tsakanian, on behalf of BESSY II Team Helmholtz-Zentrum Berlin, Albert-Einstein-Str. 15, 12489 Berlin

HarmonLIP 2022 Workshop

10 - 12 October 2022 MAX IV, Lund, Sweden

## **BESSY II Storage Ring**

- BESSY II is a 1.7 GeV synchrotron radiation source operating for 20 years in Berlin
- Core wavelength in the range from Terahertz region to hard X rays





| BESSY II Parameters |          |  |  |  |  |
|---------------------|----------|--|--|--|--|
| Lattice             | DBA      |  |  |  |  |
| Circumference       | 240 m    |  |  |  |  |
| Energy              | 1.7 GeV  |  |  |  |  |
| Current             | 300 mA   |  |  |  |  |
| RF Frequency        | 500 MHz  |  |  |  |  |
| RF Voltage          | 1.5 MV   |  |  |  |  |
| Bunch Length        | 15 ps    |  |  |  |  |
| Emmitance           | 6 nm rad |  |  |  |  |

## **BESSY II Storage Ring**

- BESSY II is a 1.7 GeV synchrotron radiation source operating for 20 years in Berlin
- Core wavelength in the range from Terahertz region to hard X rays





| BESSY II Parameters |          |  |  |  |  |
|---------------------|----------|--|--|--|--|
| Lattice             | DBA      |  |  |  |  |
| Circumference       | 240 m    |  |  |  |  |
| Energy              | 1.7 GeV  |  |  |  |  |
| Current             | 300 mA   |  |  |  |  |
| RF Frequency        | 500 MHz  |  |  |  |  |
| RF Voltage          | 1.5 MV   |  |  |  |  |
| Bunch Length        | 15 ps    |  |  |  |  |
| Emmitance           | 6 nm rad |  |  |  |  |

## **BESSY II Filling Patterns**





## 1.5GHz Cu Cavity – ALBA Design



#### **Fundamental mode**







- High E-field around the in inner gap corners could be limitation for gradient – discharge issue.
- High B-field at connection of cavity body & attached elements – heat issue.
- Field has asymmetry due to the FPC etc. field map tracking is required (Beam dynamic)

#### **Thermal Simulations**



28,114

- First thermal simulation with active cooling shows that at HOM waveguide-cavity body connection points the temperature can rise up to 70°C while the average cavity temperature remains below 45°C.
- More simulations are foreseen with different cooling rates implying changes in water pipe dimensions.
- Based on practical experience keeping, the local heat flax <1.2 W/mm<sup>2</sup> can improve the life time of the cavity.



Courtasy of M. Dirsat, HZB





- > All those modes have very low R/Q & Qext except the mode localised in plunger.
- The mode localized in the plunger is not damped & can lead to heating issues, i.e. some frequency ranges to be avoided... more detailed simulation are required for different plunger positions.
- > In case FPC antenna is fixed, what are the scenarios for operation master clock shifts ?

# Plunger Bellow



- During cavity commissioning the highest heat load is observed in plunger bellow.
- The plunger bellow is made of stainless still & has no shielding. The highest temperature of bellow was ~43°C while the entire cavity outside surface <30°C.</p>
- Dedicated test is planned to understand the origin of the heat load in bellow, i.e. is it due to the fundamental mode, plunger localized mode or some HOMs.

## Mode Atlas – Eigenmode Solver



- Eigenmodes are computed for fixed plunger position.
- The eigenmode solver gives accurate results up to 3GHz. At higher >3GHz frequencies the resonant modes spectrum becomes very dense & sensitive on port boundaries.
- For broader frequency range up to 10GHz long-range wakefield simulation are required.

| Nr. | f (GHz) | Q external | R/Q       | R/Q with TT |                  |
|-----|---------|------------|-----------|-------------|------------------|
| 1   | 1.484   | 6060.0     | 0.46520   | 0.18652     | Input Coupler    |
| 2   | 1.486   | Inf        | 0.00705   | 0.00282     | Input Coupler    |
| 3   | 1.495   | Inf        | 0.05498   | 0.05321     | Tuner            |
| 4   | 1.500   | 7017.0     | 419.18275 | 164.59412   | Fundamental Mode |
| 5   | 1.623   | 76.2       | 4.73829   | 1.69462     | Input Coupler    |
| 6   | 1.758   | 243.2      | 0.00004   | 0.14009     | HOM Coupler      |
| 7   | 1.758   | 239.8      | 0.00170   | 0.00602     | HOM Coupler      |
| 8   | 1.761   | 191.0      | 2.77207   | 0.71835     | HOM Coupler      |
| 9   | 1.806   | 117.1      | 0.00115   | 0.82379     | HOM Coupler      |
| 10  | 1.807   | 116.7      | 0.01390   | 0.08317     | HOM Coupler      |
| 11  | 1.821   | 101.3      | 14.47335  | 3.37674     | HOM Coupler      |
| 12  | 1.894   | Inf        | 0.19130   | 0.34047     | HOM Coupler      |
| 13  | 1.896   | Inf        | 0.00256   | 1.00400     | HOM Coupler      |
| 14  | 1.905   | 97.9       | 9.83414   | 2.13453     | HOM Coupler      |
| 15  | 1.913   | 25.9       | 0.00000   | 0.00000     | Input Coupler    |
| 16  | 1.913   | 34.4       | 0.00002   | 0.00001     | Input Coupler    |
| 17  | 1.942   | 12.4       | 0.02038   | 0.00689     |                  |
| 18  | 1.959   | 556.2      | 0.13958   | 0.26542     | (Tuner)          |
| 19  | 1.968   | 11.5       | 0.02513   | 0.01531     | (Tuner)          |
| 20  | 1.994   | 23.5       | 0.28876   | 6.01877     |                  |
| 21  | 2.006   | Inf        | 0.00005   | 0.00001     | Input Coupler    |
| 22  | 2.006   | Inf        | 0.00046   | 0.00012     | Input Coupler    |
| 23  | 2.014   | 64.7       | 0.16314   | 0.05644     |                  |
| 24  | 2.024   | Inf        | 7.77731   | 1.23831     | HOM Coupler      |
| 25  | 2.059   | Inf        | 0.00000   | 0.00000     | Input Coupler    |
| 26  | 2.059   | Inf        | 0.00000   | 0.00026     | Input Coupler    |
| 27  | 2.105   | 68.0       | 0.05942   | 47.61088    | TM011            |
| 28  | 2.124   | Inf        | 0.00019   | 0.00031     | Tuner            |

#### **Courtasy of TEMF/TU-Darmstadt**

## Wakefield Simulations



## Signal Spectral Weighting Technique



#### ALBA – HOM Power Distribution at Ports



## **ALBA – HOM Power Distribution at Ports**



## **WATRAX RF Properties**





#### **Ridged Waveguide Modes**



**Ferrite Tiles** 



#### **Component with Ferrits & Vacuum Ports**





The component with ferrit tiles & vacuum pumping ports is designed as optional part to excising ALBA cavity.



#### **Component with Ferrits & Vacuum Ports**



#### Wake Simulations with Ferrites

|                          | K                       |       | HOM Power [V        | /] for Baseline Fi | illing     |                                                                                                                                                                                                                                               |
|--------------------------|-------------------------|-------|---------------------|--------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                         | Ī     | Port                | Ohne Ferrit        | Mit Ferrit |                                                                                                                                                                                                                                               |
|                          |                         | Ī     | 1 -FPC              | 12.5               | 11.3       | l                                                                                                                                                                                                                                             |
|                          | State -                 | Ī     | 2 - Antenna         | 40.3               | 1.7        | l                                                                                                                                                                                                                                             |
|                          |                         |       | 3- Antenna          | 22.7               | 2.3        |                                                                                                                                                                                                                                               |
|                          |                         |       | 4 -Antenna          | 425                | 4.0        |                                                                                                                                                                                                                                               |
|                          | More than 90% of HOM pr | ower  | BmP1                | 29.1               | 27.8       |                                                                                                                                                                                                                                               |
| Component with forrits   | is absorbed in Ferrites |       | BmP2                | 48.7               | 47.6       |                                                                                                                                                                                                                                               |
| & pumping port           |                         |       | Sum - Coherent      | 195.8              | 94.8       |                                                                                                                                                                                                                                               |
| HOM antenna & Coax. Port | 2000                    |       | Sum – None-Coherent | 300.8              |            | I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I |
| 0                        | 0 2 2.5                 | 3 3.5 | 4 45 5 55 6         | 6.5 7 7.5          | 8 8.5      | 9 9.5 10 10.5 11                                                                                                                                                                                                                              |
| L                        |                         |       | Freque              | ency [GHz]         |            | 20                                                                                                                                                                                                                                            |

#### HOM Power Levels & Distribution

|                     | HOM Power [W]  |            |                 |            |                   |            |  |
|---------------------|----------------|------------|-----------------|------------|-------------------|------------|--|
|                     | Baseline Filli | ng (300mA) | BESSY II Fillir | ng (300mA) | Single Bunch 30mA |            |  |
| Port                | Ohne Ferrit    | Mit Ferrit | Ohne Ferrit     | Mit Ferrit | Ohne Ferrit       | Mit Ferrit |  |
| 1 -FPC              | 12.5           | 11.3       | 8.0             | 7.6        | 10.3              | 8.6        |  |
| 2 – HOM Antenna     | 40.3           | 1.7        | 27.5            | 0.6        | 67.5              | 5.0        |  |
| 3 – HOM Antenna     | 22.7           | 2.3        | 12.1            | 1.2        | 47.4              | 5.9        |  |
| 4 – HOM Antenna     | 425            | 4.0        | 11.0            | 2.4        | 92.9              | 9.6        |  |
| BmP1                | 29.1           | 27.8       | 13.7            | 14.0       | 7.9               | 7.2        |  |
| BmP2                | 48.7           | 47.6       | 25.3            | 24.2       | 10.1              | 9.7        |  |
| Sum - Coherent      | 195.8          | 94.8       | 97.5            | 49.9       | 226.1             | 45.9       |  |
| Sum – None-Coherent | 300.8          | 112.0      | 150.6           | 54.7       | 230.1             |            |  |

- Half of the HOM power is absorbed in HOM dampers.
- Half of the HOM power is propagating out thru beampipes into the ring. The three cavity chain should be simulated to estimate expected maximum HOM powers in the dampers.
- The sequence of different elements in the straight section should be simulated to avoid localized HOMs.
- Limited space in the straight section requires solutions for vacuum pumping.



Thank You for Your Attention !