ACCESING HARDWARE
BLISS

Antonia Beteva (ESRF)

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

ACCESSING HARDWARE - BLISS

BLISS — Short Presentation

BLISS stands for BeamLine Instrumentation Support Software.

BLISS is a control system which provides a global approach to run synchrotron experiments requiring
to synchronously control motors, detectors and various acquisition devices thanks to hardware
integration, Python sequences and an advanced scanning engine.

As a Python package, BLISS can be easily embedded into any Python application. BLISS data
management features enable custom scripts to perform online data analysis.

BLISS ships with tools to enhance scientist users experience:

* aweb portal to get access to BLISS applications
+ a centralized logs viewer

» a configuration application

* a powerful command line interface

» an online data visualization application

Repository:

https://qitlab.esrf.fr/bliss/bliss
Documentation:
https://bliss.qitlab-pages.estf.fr/bliss/master/

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

https://gitlab.esrf.fr/bliss/bliss
https://bliss.gitlab-pages.esrf.fr/bliss/master/

ACCESSING HARDWARE - BLISS

BLISS — Technical Choises and Design Principles

Written in Python ¢

--

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

ACCESSING HARDWARE - BLISS

BLISS — Architecture Overview

Adaptation layer, to
make hardware
controllers behaving
properly in scans,
depending on the
scan

- Acq.controller Counter
control & acquisition objects

Motor Lima(2D) Regulation
hardware controllers
Keithley MRS xia Plaws Sphen

RPC modbus serial tcpludp gpib

Mini frameworks
within BLISS, to ease
integration of same

kind of hardware

(171D ss1q) 118YS

Beacon server

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

ACCESSING HARDWARE - BLISS

BLISS — Beacon Server

Devices & sequences
configuration in YAML format

class: alms
adps
i 1

£l: 160.103.51.174

axsei

fith
acceleration: Ié
d#tapa _par onit: J0STT

yalocitys

= R

e

nome_velosity: 15
valocity low limit:

valosity high limit: J60.0

configuration management

url: idilasrotech-1 &

PETLE

- namei nth aers -
acceleration: 5 SEWI CES

steps_per_unit: 1

Web interface for configuration editing Transient data store

&P redis

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

User sessions to group
beamline devices for an
experiment + Python setup file

Centralized logging and
log viewer web
application

|

S database
TANG;" % implementation

Settings cache

&2 redis

ACCESSING HARDWARE - BLISS

BLISS — Data Flow

o YAML TH Configuration
CaCOILi Files
Server — —
l FAIR
v > Data Policy
Shell . ICAT, E-logbook |
Persistent
Scanning Engine SELLIngs
; Online Data !
— | Display A
data " HDFS - Nexus |

API » File Writer

References
only Online Data
> Analysis

Daiquiri
web GUI

Image Files

—»

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

ACCESSING HARDWARE - BLISS

BLISS — Scanning
- Powerful scanning engine for step-by-step and continuous scans.
All scans are based on the same Scan object.

The Scan object iterates through the Acquisition Chain that describes the
triggering sequence (software or hardware).

Data is sent to Redis and can be used for online display, online data analysis
and saved.

For “standard” scans the Acquisition Chain is built automatically, trying to
guess the most optimized setup.

lineup

T

dscan d2scan d{3..5}scan

v

af3..5}scan dnscan

dmesh di3imesh ascan aZscan

r : NN

lovopscan ct amesh a’imesh pointscan ANSCcan

\ 1 \‘]
timescan anmesh lookupscan

\ ! ‘,//

bliss.scanning.scan.Scan

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

ACCESSING HARDWARE - BLISS

BLISS — What Users Like

- Python — scientist can take an advantage of a huge ecosystem for
their own scripts

- Interactive data display tool — Flint

- Easy to switch between real and pseudo axes.

. Pseudo counters — any experimental parameter that can be 1 oo 80 o
measured during a scan.

- Software regulation loop — BLISS provides s Software Loop object
that knows how to regulate with PID parameters.

Erof i mocro, time: 16/05/2021
11:5303, Temperature: 200

Congeaty st cns, your macro hae
ended sazcessfully!

Congraty et ons, your macro hes
noed £ assassfulyt

- Data accessible immediately vis Redis for custom online display Compaitcn s ot
and data analysis.
- Large number of hardware controllers, ready for immediate use. L =, J

- Easy to change and save setup — useful when changing sample
environment.

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

ACCESSING HARDWARE - BLISS

BLISS — mxcubecore Implementation

- BLISS is written in python, which makes it very convenient to embed, rather than defining
commands and channels, which might end up with a huge number.

- Install BLISS in the same conda environment as mxcubecore. We can thus import the configuration
and the "session", which contains all the objects and scripts we need.

- The Bliss class implements how a session is initialised and gives access to any of the session
objects. The initialisation is done at the start of the mxcubeweb server, with the first hardware object
which uses bliss.

- A BLISS session represents an experimental setup associated with experiment control sequences. A
session has a list of objects from configuration and a setup file. The BLISS session is an object, so it
has an yaml configuration file, which lists the bliss objects that the session will provide. The session
setup file is python file where scripts like quick_realign, find_max_attenuation, centrebeam... are
instantiated. These scripts can than be run as beamline actions or used in Hardware objects like
XRF and EnergyScan.

- To update state and value and thus emit the standard valueChanged and stateChanged signals, the
HardwareObject connect method to connect an object from a bliss session is used.

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

ACCESSING HARDWARE - BLISS

BLISS — mxcubecore Implementation

Bliss class xml file

from mxcubecore.BaseHardwareObjects import <object class="Bliss">
HardwareObject <session>mxcubebliss</session>
from bliss.config import static </object>
class Bliss(HardwareObiject):

""Bliss class""

def __init__ (self, *args):
super().__init__(*args)

def init(self, *args):
""" Initialis the bliss session
cfg = static.get_config()
session = cfg.get(self.get_property('session"))
session.setup(self. __dict _, verbose=True)

BlissNState class Xml file

class BlissNState(AbstractNState): <object class="BlissNState">
“”Implementation of AbstartNState””

<username>Detector Cover</username>
def init(self): <actuator_name>detcover</actuator_name>

self._bliss_obj = getattr(<object href="/bliss" role="controller"/>

self.get_object_by_role("controller") <values>{"IN": "IN", "OUT": "OUT"}</values>
self.actuator_name)

self.connect(self._bliss_obj, "state”, self.update_value) ~ </0biect>

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

