
MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

ACCESING HARDWARE

BLISS
Antonia Beteva (ESRF)

ACCESSING HARDWARE - BLISS

BLISS – Short Presentation

BLISS stands for BeamLine Instrumentation Support Software.

BLISS is a control system which provides a global approach to run synchrotron experiments requiring

to synchronously control motors, detectors and various acquisition devices thanks to hardware

integration, Python sequences and an advanced scanning engine.

As a Python package, BLISS can be easily embedded into any Python application. BLISS data

management features enable custom scripts to perform online data analysis.

BLISS ships with tools to enhance scientist users experience:

• a web portal to get access to BLISS applications

• a centralized logs viewer

• a configuration application

• a powerful command line interface

• an online data visualization application

Repository:

https://gitlab.esrf.fr/bliss/bliss

Documentation:

https://bliss.gitlab-pages.esrf.fr/bliss/master/

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

https://gitlab.esrf.fr/bliss/bliss
https://bliss.gitlab-pages.esrf.fr/bliss/master/

ACCESSING HARDWARE - BLISS

BLISS – Technical Choises and Design Principles

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

ACCESSING HARDWARE - BLISS

BLISS – Architecture Overview

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

ACCESSING HARDWARE - BLISS

BLISS – Beacon Server

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

ACCESSING HARDWARE - BLISS

BLISS – Data Flow

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

ACCESSING HARDWARE - BLISS

BLISS – Scanning

• Powerful scanning engine for step-by-step and continuous scans.

• All scans are based on the same Scan object.

• The Scan object iterates through the Acquisition Chain that describes the

triggering sequence (software or hardware).

• Data is sent to Redis and can be used for online display, online data analysis

and saved.

• For “standard” scans the Acquisition Chain is built automatically, trying to

guess the most optimized setup.

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

ACCESSING HARDWARE - BLISS

BLISS – What Users Like

• Python – scientist can take an advantage of a huge ecosystem for

their own scripts

• Interactive data display tool – Flint

• Easy to switch between real and pseudo axes.

• Pseudo counters – any experimental parameter that can be

measured during a scan.

• Software regulation loop – BLISS provides s Software Loop object

that knows how to regulate with PID parameters.

• Data accessible immediately vis Redis for custom online display

and data analysis.

• Large number of hardware controllers, ready for immediate use.

• Easy to change and save setup – useful when changing sample

environment.

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

ACCESSING HARDWARE - BLISS

BLISS – mxcubecore Implementation

• BLISS is written in python, which makes it very convenient to embed, rather than defining

commands and channels, which might end up with a huge number.

• Install BLISS in the same conda environment as mxcubecore. We can thus import the configuration

and the "session", which contains all the objects and scripts we need.

• The Bliss class implements how a session is initialised and gives access to any of the session

objects. The initialisation is done at the start of the mxcubeweb server, with the first hardware object

which uses bliss.

• A BLISS session represents an experimental setup associated with experiment control sequences. A

session has a list of objects from configuration and a setup file. The BLISS session is an object, so it

has an yaml configuration file, which lists the bliss objects that the session will provide. The session

setup file is python file where scripts like quick_realign, find_max_attenuation, centrebeam... are

instantiated. These scripts can than be run as beamline actions or used in Hardware objects like

XRF and EnergyScan.

• To update state and value and thus emit the standard valueChanged and stateChanged signals, the

HardwareObject connect method to connect an object from a bliss session is used.

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

ACCESSING HARDWARE - BLISS

BLISS – mxcubecore Implementation

MXCuBE Code Camp, 9-11 October 2023 Antonia Betva (beteva@esrf.fr)

Bliss class xml file

from mxcubecore.BaseHardwareObjects import

HardwareObject

from bliss.config import static

class Bliss(HardwareObject):

"""Bliss class""“

def __init__(self, *args):

super().__init__(*args)

def init(self, *args):

"""Initialis the bliss session""“

cfg = static.get_config()

session = cfg.get(self.get_property("session"))

session.setup(self.__dict__, verbose=True)

<object class="Bliss">

<session>mxcubebliss</session>

</object>

BlissNState class Xml file

class BlissNState(AbstractNState):

“””Implementation of AbstartNState”””

…

def init(self):

self._bliss_obj = getattr(

self.get_object_by_role("controller")

self.actuator_name)

self.connect(self._bliss_obj, "state", self.update_value)

<object class="BlissNState">

<username>Detector Cover</username>

<actuator_name>detcover</actuator_name>

<object href="/bliss" role="controller"/>

<values>{"IN": "IN", "OUT": "OUT"}</values>

</object>

