Examples of advanced X-ray characterization of (mainly) alloys?

Rajmund Mokso DTU Physics, Denmark & MAX IV Laboratory in Lund, Sweden

Imaging methods with 3D capabilities

Fast tomography: in-situ visualization of fracture

Al - Alumina sample (Eric Maire, Joel Lachambre, INSA Lyon, France)

Vertical tomographic slice, time separation ~ 50 ms, voxel = 3μ m

Fatique cracking in Alumina sample

Maire et al., Int J Fracture 2016

Ti-6AI-4 Sintering

Acta Materialia

journal homepage: www.elsevier.com/locate/actamat

Full length article

In situ synchrotron study of sintering of gas-atomized Ti-6Al-4 V powder using concomitant micro-tomography and X-ray diffraction: Effect of particle size and interstitials on densification and phase transformation kinetics

M. Pontoreau^a, M. Coffigniez^a, V. Trillaud^a, C. Le Bourlot^a, J. Lachambre^a, L. Gremillard^a, M. Perez^a, E. Maire^a, J. Adrien^a, P. Steyer^a, T. Douillard^a, A. King^b, X. Boulnat^{a,*}

^a INSA Lyon, University of Lyon, MATEIS, UMR CNRS 5510, F69621 Villeurbanne, France ^b Synchrotron Soleil, Psiché Beamline, F-91190 Gif-sur-Yvette, France

Ti-6Al-4 V gas-atomized powders

Ti-6AI-4 Sintering

In-situ tomographic microscopy

Voxel size =650 nm

X-ray energy (pink) ~ 30-80 keV

Acquisition time ~ 6 s

Fig. 4. Interconnected pore evolution for all samples with (i) the evolution of the thickness of their branches and (ii) 2D and 3D ($135 \times 108 \times 133 \ \mu m^3$) representation of local thickness plugin used on sample Ti36_DB500 (one slice and less than 1 vol% of total 3D volume).

During sintering, the thickness of the interconnected pore is globally stable despite the shrinkage of the interconnected pore network => suggests that the decrease in volume of the interconnected pores network only happens by the closure of the branches composing the interconnected pore rather than an isotropic shrinkage.

DTU Fysik

Contents lists available at ScienceDirect

Acta Materialia

journal homepage: www.elsevier.com/locate/actamat

A new precipitation based healing strategy for metals demonstrated on the commercial Al 6063 alloy.

Full length article

A new healing strategy for metals: Programmed damage and repair

Mariia Arseenko^a, Florent Hannard^a, Lipeng Ding^{a,b,c}, Lv Zhao^{a,d}, Eric Maire^e, Julie Villanova^f, Hosni Idrissi^{a,b}, Aude Simar^{a,*}

^a Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve 1348, Belgium
^b Electron Microscopy for Materials Science, University of Antwerp, Antwerp 2000, Belgium
^c Key laboratory for Light-Weight Materials, Nanjing Tech University, Nanjing 211816, China
^d Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
^e Mateis, INSA Lyon, Université de Lyon, Villeurbanne F-69621, France
^f ESRF - The European Synchrotron, Grenoble 38043, France

Programmed Damage and Repair

DTU Fysik

Healing in metals

In-situ holotomography with Voxel size =35 nm X-ray energy = 17.5 keV Acquisition time ~ 20 min

Fully exploited coherence properties of the new machines.

Fig. 6. Healing evolution with time at 400°C. (a) 3D volumes and corresponding Minimum Intensity Projections (MinIP) in the initial state, after 10 min and after 2 h at 400 °C; (voids are in black, intermetallic particles in yellow and Mg₂Si particles in grey). (b) Evolution of the number of healed cavities with healing time for different size classes: Specimens 1 and 2 correspond to 0.6 mm of global elongation; Specimen 3 corresponds to 0.7 mm of global elongation (see Supplementary material 2 for details on each specimen). (c) Cumulative distribution function (CDF) of the near-neighbour distances between voids as a function of the heating time. (d) Evolution of the void volume fraction (F_v), normalised by the value in the initial state ($F_{v,init}$). (e) HAADF-STEM images showing healing evolution with time. The black arrows indicate the position of the crack

Critical components of success

weak contrast between metallic phases

Optimized phase contrast acquisition and reconstruction

Full exploitation of coherence of the beam

need of reliable and non-manual quantification of fine and complex structures

Clean X-ray wavefront As perfect (and as few) beamline optics as possible

Representative volumes

Maximized aspect ration between FOV and resolution

Large beam /detector

Alumínum foams

High speed imaging

Why Alu?

1 I A																	18 VIII A
1 1																	2
н	2											13	14	15	16	17	He
Hydrogen	II A											III A	IV A	VA	VIA	VII A	Helium
3 ²	4 ² ₂											5	² 3 6	² 7	8	9	² / ₇ 10
Li	Be											В	С	N	0	F	Ne
Lithium	Beryllium											10.044	Carbon	Nitrogen	Oxygen	Fluorine	Neon
11 ²	9.012182											10.811	2.0107 2 1.	14.0067 ² 15	15.9994	18.9984032	20.1797 2 18
Na	Ma	3	4	5	6	7	8	9	10	11	1:	Δι	Si	í p	S	CL	Δr
Sodium	Magnesium	III B	IV B	VВ	VIB	, VII B	VIII B	VIII B	VIII B	I B	II E	Aluminium	ilicon	Phosphorus	Sulfur	Chlorine	Argon
22.98976928	24.305	21 2	22 2	22 2	24 2	25 2	26 2	27 8	2 29 2	20	2 20 2	26.9815386	28 55	30.973762	32.065	35.453	39.948
			22 8 10 2	23 8 11 2		20 8 13 2	20	21	20 8 5 16 2 2	29		31			34		
K	Ca	SC		V	Cr	ININ	Fe	Co	NI		Zn	ма	Ge	AS	Se	Br	Kr
Potassium 39.0983	Calcium 40.078	Scandium 44.9559	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938045	Iron 55.845	Cobalt 58.933195	Nickel 58.6934	Copper 63.546	Zinc 65.38	Gallium 69.729	Germanium 72.64	Arsenic 74.9216	Selenium 78.96	Bromine 79.904	Krypton 83.798
37 2	38 ²	39 ²	40 ²	41 ²	42 ²	43 2	44 🚦	45	² 46 ²	47	² / ₈ 48 ² / ₈	49	² 50	្លំ 51	52	53	² 54
Rb	Sr ¹	Y ¹	Zr 🖞	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
85.4678	87.62 56 ²	88.90585	91.224 72 ²	92.9063 73 ²	95.96 74 ²	[98]	101.07 76 ²	102.9055	106.42 2 78 2	107.8682 79	112.411 2 80 2	114.818 81	118.71 2 82	121.76 2 83 2	127.6 84	126.90447	131.293 2 86
	B 18		18 18 18 10							Å	8 18 18 12 32 18					~	
	Ba	57-71				Re 2				Au	i Hg i		an l	Ы	PO	At	[*] KN
Caesium 132.9054519	Barium 137.327	Lanthanoids	Hatnium 178.49	lantalum 180.94788	Tungsten 183.84	Khenium 186.207	Osmium 190.23	Indium 192.217	Platinum 195.084	Gold 196.966569	Mercury 200.59	1 hallium 204.3833	Lead 207.2	208.9804	Polonium [209]	Astatine [210]	Radon [222]
87	88 ²		104 ²	105 👔	106	107 🛔	108	109	² 110 ²	111	² / ₈ 112 ² / ₈	113	² / ₈ 114	² 115	116	117	² 118
Fr 132	Ra	89-103	Rí 10	Db 32	Sg	Bh 🖁	Hs Hs	Mt 3		Rg	²² Cn ³²	Nh		Mc	Lv	Ts	Og
Francium	Radium	Actinoids	Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesson
[223]	[226]		[267]	[268]	[271]	[272]	[270]	[276]	[281]	[280]	[285]	[286]	[289]	[288]	[293]	[[294]	[294]

Simplest to image relevant sized samples at a usual imaging beamline at 3rd gen synchrotrons

57 🛔	58	² 59 ²	60 ²	61 ²	62 ²	63 ²	64 ²	65 ²	66 ²	67 ²	68 ²	69 ²	70 2	71 28
La	Ce		Nd ²²	Pm 🖁	Sm 🖁	Eu 🖁	Gd	Tb 27	Dy	Ho	Er 🖁	Tm 🖁	Yb	Lu 📱
Lanthanum	Cerium	Praseodymium	Deodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
138.90547	140.116	140.90765	144.242	[145]	150.36	151.964	157.25	158.9253	162.5	164.93032	167.259	168.93421	173.054	174.9668
89 👔	90	² 91 ²	92 ²	93 ²	94 ²	95 ²	96 ²	97 2	98 ²	99 ²	100 ²	101 🚦	102 🖁	103 🚦
Ac	Th	Pa	U 21	Np	Pu 📱	Am 📱	Cm 🖁	Bk 327	Cf	Es 🖁	Fm 📱	Md	No	Lr 📱
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
[227]	232.03806	231.03588	238.02891	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[262]	[262]

Nanoparticle stabilization for industrial AI foam production

Precursor made from oxidized melt heated slightly above the melting point.

From materials to devices

Interfaces between high and low Z materials are difficult

The important contribution of phase contrast at high energies

4D imaging lab,

Zeiss, Solid mechanics, LU

Le Cann et al., Front. Bioeng. Biotechnol 2019

Díscussíon

- I. Which type of materials are you interested in? (Al, Mg...)
- II. Any interest in samples with more than 1 mm steel?
- **III.** Are large batches of samples relevant? (automation of acquisition)
- IV. For in-situ studies, do you have your own sample environment? Compatible with X-ray tomo?

