Tomography for metals (industry)

Johan Hektor, Malmö University

Why tomography on metals?

- Look for
 - Phases
 - Precipitation, particles, etc.
 - Porosity
 - Voids, defects, quality control, etc.
 - Damage
 - Cracks, delamination, etc.
- 2D, 3D, **4D**

Ductile cast iron under tensile loading

- 4D study of deformation mechanisms
- Material from a truck engine
- Push to reduce emissions
 - Increased pressure and temperature in the engine = need for better materials

The experiment

- In-situ tensile loading •
- Tomography + 3DXRD •
- ID11 @ESRF •
- Energy: ~60keV •

Important for new 1) Sample environments

Deformation mechanisms_{Loadstep 0} from tomography

Important for new beamline:

- Sample environments 1)
- 2) Data analysis

Loadstep 4

Loadstep 1

Loadstep 5

Loadstep 6

Ferrite matrix Graphite Carbide Crack Graphite delamination Graphite displacement

Background

Liquid film migration in Al with braze cladding

Important for new beamline:

- 1) Sample environments
- 2) Data analysis
- 3) Laminography (?)

G

- Tomography from 4D Imaging lab (LTH)
- Braze layer is easily visible on one side
 - Density difference
 - Also large differences in crystallography

Stenqvist, *et al.* (2021), Adv. Eng. Mater Tomography from 4D Imaging Lab, Lund University

slice z=12350

800

700

600

500

400

300

Microstructural evolution in metal foams

- Multimodal imaging (DCT, 3DXRD, PCT) of Al foams during heat treatment
- Grain growth and precipitation of Si-rich particles
- ID11 (ESRF)
- Energy: 38keV

Grain evolution by diffraction contrast tomography

Important for new beamline:

- 1) Sample environments
- 2) Data analysis
- 3) Laminography(?)
- 4) Alternative contrast mechanisms (?)

Initial

after annealing at 530° C for 8hr

after annealing at 165°C for 12hr