Tomography for metals (industry)

Johan Hektor, Malmö University

Why tomography on metals?

- Look for
- Phases
- Precipitation, particles, etc.
- Porosity
- Voids, defects, quality control, etc.
- Damage
- Cracks, delamination, etc.
- 2D, 3D, 4D

Ductile cast iron under tensile loading

- 4D study of deformation mechanisms
- Material from a truck engine
- Push to reduce emissions
- Increased pressure and temperature in the engine $=$ need for better materials

RI

Lunds
universitet

MALMÖ
UNIVERSITY

The experiment

- In-situ tensile loading
- Tomography + 3DXRD
- ID11 @ESRF
- Energy: ~60keV

Deformation mechanisms
 Loadstep 0 from tomography

 Loadstep 3
 beamline:
 1) Sample environments
 2) Data analysis
 Loadstep 4

 Loadstep 1

Liquid film migration in Al with braze cladding

slice $\mathrm{z}=12350$

Important for new beamline:

1) Sample environments
2) Data analysis
3) Laminography (?)

- Tomography from 4D Imaging lab (LTH)
- Braze layer is easily visible on one side
- Density difference
- Also large differences in crystallography

Microstructural evolution in metal foams

- Multimodal imaging (DCT, 3DXRD, PCT) of Al foams during heat treatment
- Grain growth and precipitation of Si-rich particles
- ID11 (ESRF)
- Energy: 38keV

Grain evolution by diffraction contrast tomography

Initial

after annealing at $530^{\circ} \mathrm{C}$ for 8 hr

after annealing at $165^{\circ} \mathrm{C}$ for 12 hr
MALMÖ
UNIVERSITY

