

MAX IV Laboratory

Accelerator Reliability Workshop 2024

Pedro F. Tavares
Accelerator Director
MAX IV Laboratory

This is MAX IV

- A Swedish, national laboratory for Xray research with Lund University as host
- A fourth-generation light source up to 100 times brighter than the earlier generation and highly coherent
- Available for academic and industrial users worldwide

MAX IV Laboratory in a nutshell

- ☐ Swedish National Synchrotron Radiation Facility
- ☐ First worldwide fourth Generation Storage Ring
- ☐ Inaugurated in June 2016
- □ ~5000 hours/year; ~ 98% uptime
- ☐ 16 Beamlines in user operation
- ☐ 1700 users/year from 34 countries
- □ >200 publications/year

FemtoMAX
 fs dynamics in solid

BALDER

NanoMAX Nano-imaging & - spectroscopy

Chemical spectroscopy: operando

4. BioMAX

Protein crystallography

5. Veritas
Electronic & magnetic excitations: solids

6. Hippie Photoemission: near ambient pressure

7. BLOCH Electronic structure: solids

8. FinEstBeaMS
Electronic structure: gases, aerosols

SPECIESElectronic & magnetic excitations: surfaces

10. MAXPEEMMicroscopy: surfaces

11. FlexPESElectronic structure: surfaces & gases

12. CoSAXSGeometric structure & correlation: (bio) liquids

13. SoftiMAXMicroscopy & method development

14. DanMAX

Powder diffraction & imaging: materials science

15. ForMAX

Wood & paper: structure & processing

16. MicroMAXMost relevant (difficult) protein structures

MAX IV and ESS

- Light (X-rays)
- Swedish

Accelerator Reliability is critical to both facilities

Landscape of Fourth Generation Storage Rings

- Proposed
- Under Design/Construction
- In operation

Small Emittance – More opportunities for research

Not "more" photons but better photons	
More photon per eV More access to micron and submicron size beam More Coherence	S
 Better resolution □ Better spatial resolution □ Better time resolution □ New opportunity to study dynamics, kinetic □ Operando and in-situ studies 	CS Slide by Aymeric Robert

MAX 4^U: Upgrade of the MAX I 3 GeV Ring

☐ Hard boundary conditions: \square Emittance \lesssim **100 pmrad**. □ Keep shielding wall/existing light source positions ☐ Limited dark period □Cost-effective ☐ Realizable until the early part of the next decade ☐ Likely assumptions ☐ Keep the ring periodicity ☐ Keep all light source positions □ Keep the injector: accumulation (no swap-out) ☐ Keep the RF system

MAX 4^u: Towards the next generation

MAX II (1996 – 2015)

MAX 4 (2016 - 2030)

MAX 4^{U} (2030 –)

Higher Brightness and Coherence