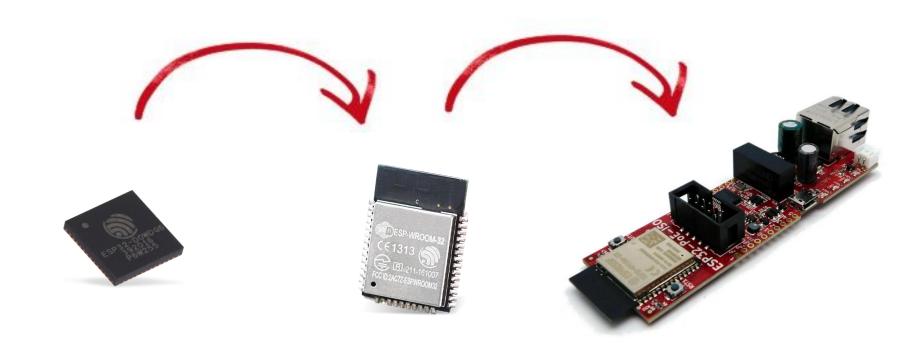
ESP32 microcontrollers

Sofia Bukreeva, research engineer

Primary goal

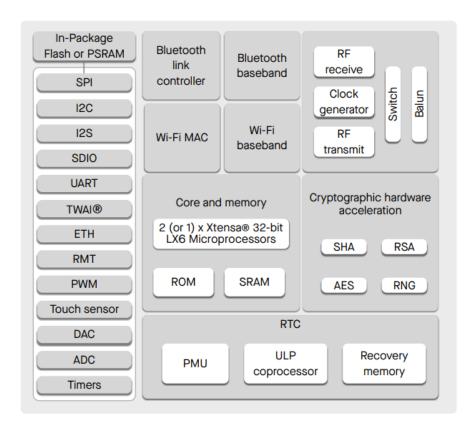
To have some solution for various tasks which are not reasonable to implement with PLC, PandaBox, Electrometer, etc.

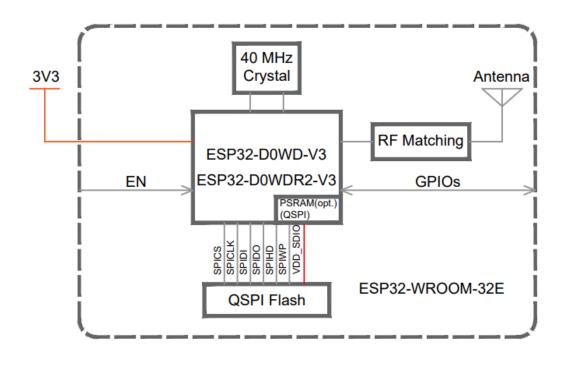
- Flexible
- Scalable
- Easy-to-use


What we have: ESP32-POE-ISO board

Made by Olimex company.

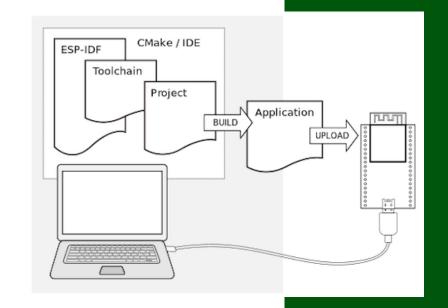
- Easy to start
- Small and cheap
- Power over Ethernet
- General serial interfaces like SPI, I2C, UART
- 12 GPIOs (+4 input only)
- Bluetooth/Wi-Fi
- USB-UART for flashing the firmware/communicating/powering


ESP32-D0WD-V3 SoC


ESP32-WROOM-32E Module ESP32-POE-ISO Board

ESP32 SoC

ESP32 module



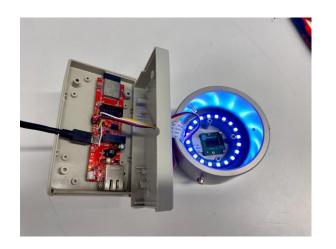
- Wireless connectivity (Wi-Fi, Bluetooth)
- 32-bit dual-core Xtensa LX6, 240 MHz
- Ethernet MAC, CAN-compatible controller (TWAI)
- UART, SPI, I2C, I2S, 12-bit ADC, 8-bit DAC...
- 520 KB SRAM, 448 KB ROM
- 28 GPIOs (but only 26 in ESP32 module) and +6 reserved for Flash
- Low price 1-2 Euro per chip

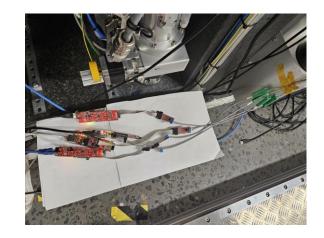
- Open-source ESP-IDF
- Espressif IDE
- Supported by Arduino IDE
- Extensions for VS Code, Eclipse

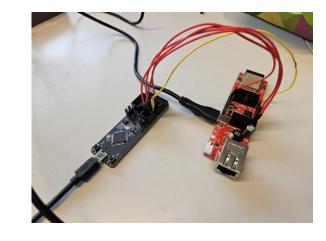
Minimum longevity commitment for ESP32 is 15 years starting from 2016.

Xtensa 32-bit LX7 dual/single-core, up to 240 MHz

RISC-V 32-bit single-core, up to 160 MHz




Current situation


~10 ESP32-POE-ISO boards are spread at the facility within a couple of months.

Used at beamlines for reading sensors and simple logic

implementation.

Two ways of designing

New task

Specific ESP32 firmware

Specific Tango Device

New task

Generic ESP32 firmware

Generic Tango Device

Main points

- Settings can be sent with JSON messages over MQTT
- Protocol to be implemented on ESP32 and Tango Device
- ESP32 firmware upgrade via OTA
- FreeRTOS (for using two cores, at least)

To standardize the approach in the end.

Considerations (ESP32-POE-ISO)

- Might need more GPIO and level shifters
- Might need external power
- No JTAG on the board

- Might need to make our own board
- Or find similar on the market
- Might need to change microcontroller at all

Plan

To make a plan...

- Choose IDE
- Choose module or board
- Test software features which are available
- Start developing protocol

Links

ESP32-POE-ISO board

ESP32-POE-ISO - Open Source Hardware Board (olimex.com)

ESP32 datasheet
esp32 datasheet en.pdf (espressif.com)

• **ESP32** technical manual en.pdf (espressif.com)

ESP32-WROOM-32E datasheet

<u>esp32-wroom-32e esp32-wroom-32ue datasheet en.pdf</u> (<u>espressif.com</u>)

