

Understanding precipitation processes in steels through time-resolved high-temperature SAXS/WAXS experiments

Magnus Hörnqvist Colliander *Department of Physics | Chalmers University of Technology*

Steve Ooi, Kristina Lindgren, Timo Müller and Mattias Thuvander

Metal. Mater. Trans. 55A (2024) 4146 doi: 10.1007/s11661-024-07536-z

Chalmers University of Technology Department of Physics

理田

田目 \mathbb{F}^1

 \mathbb{R}

TIT

E CONTRADICTO CON

ALA ATELECERA

2 2 2021 - 2022 - 2022 - 2022 - 2022 - 2022 - 2022 - 2022 - 2022 - 2023 - 2024 - 2022 - 2022 - 2022 - 2022 - 20

闺 用

00000000000

The Line

Division of Microstructure Physics

- Our research focuses on materials and how the microstructure affects their properties.
- Engineering materials in close collaboration with industrial partners.
- A few examples are steels for high temperatures as in thermal power stations, coatings for cutting tools, nickel-base alloys for aeroengines and alloys used in the nuclear industry.
- We use electron microscopy and related techniques, atom probe tomography, X-ray and neutron scattering and diffraction

Research infrastructure at the Department of Physics

Chalmers Materials Analysis Laboratory – CMAL

- A research Infrastructure and open to all researchers at Chalmers University of Technology and University of Gothenburg on equal terms.
- The lab offers a broad park of instruments and tools, primarily in the fields of electron microscopy, X -ray diffraction, optical microscopy and atom probe tomography.
- Several powder diffractometers with sample environments for *in situ* tests (up to 1500 °C) and a state-of-the-art single crystal diffractometer.
- A high end, fully automated SAXS/WAXS/GISAXS instrument with *in situ* capabilities -100 to 1000 °C

NEUTRON AND X-RAY SCIENCE FOR INDUSTRIAL TECHNOLOGY TRANSITIONS

Innovating materials for sustainable development

A competence centre for industrial sustainability. Funded by Vinnova, Sweden's Innovation Agency and 23 partners from universities (KTH, Chalmers LiU), institutes (RISE, Swerim) and companies.

Hybrid steels – A new family of dualhardening steels from Ovako.

Andersson et al. ASTM STP 1623 (2020) doi: 10.1520/STP162320190163

Precipitation hardened by a combination of nanoscale intermetallic NiAl () and chromium carbides

Andersson et al. ASTM STP 1623 (2020) doi: 10.1520/STP162320190163

Precipitation hardened by a combination of nanoscale intermetallic NiAl () and chromium carbides

650 °C 4 h

The questions

- Can we track the precipitation process in realtime, throughout the full heat treatment?
- In which order do the phases (carbides and intermetallic particles appear)?
- What are the kinetics of the precipitation process(es)?

Methods

- Simultaneous small-angle scattering (SAXS) and wide-angle scattering (WAXS) during heat treatment at P21.2 at PETRA III
- SAXS for size and volume fraction
- WAXS for phase identification

²⁰²⁴⁻¹¹⁻¹² Jakob et al. Metall. Mater. Trans. 55A (2024) 870 doi: 10.1007/s11661

Small-angle X-ray scattering resolves "large" structures

- X-ray scattering measures variations in electron density ρ
- Lattice planes (periodic variations in ρ on the order of \AA) scatter to large angles
- The scattering angle decreases with increasing interplanar spacing (periodicity in ρ)
- Variations at longer length-scales nm- μ m (e.g. precipitates) scatter to small angles (<1°)
- The larger the object the smaller the scattering angle

How small angles?

What information can we get from SAXS?

- The shape of the SAXS curve depends on shape and size (distribution)
- The intensity depends on volume fraction and chemistry

McDowall et al. Soft Matter 18 (2022) 1577 doi:10.1039/D1SM01707A

12 2024-11-12 doi: 10.1007/978-3-319-92955-2_2 Londoño et al. in Hanbook of Materials Characterization (2018)

What information can we get from SAXS?

CHALMERS

- The shape of the SAXS curve depends on shape and size (distribution)
- The intensity depends on volume fraction and chemistry

Shape

Size distribution

McDowall et al. Soft Matter 18 (2022) 1577 doi:10.1039/D1SM01707A

13 2024-11-12 doi: 10.1007/978-3-319-92955-2_2 Londoño et al. in Hanbook of Materials Characterization (2018)

Analysing SAXS data

Londoño et al. in Hanbook of Materials Characterization (2018) doi: 10.1007/978-3-319-92955-2_2

- Small angle scattering is not as intuitive as diffraction
- Fitting of SAXS data can yield quantitative information
	- Particle shape
	- Size distribution
	- Volume fraction
	- Chemistry
- **But it is complicated and requires accurate models and complementary information**
- In many cases sufficient information can be obtained by simplified analyses (as in our case)

- For SAXS the *Q*-range is extremely important – it defines the size range of objects which can be resolved
- *Q*-range depends on detector size and distance, photon energy, beam stop
- Requirements often in competition with WAXS – a compromise is required

WAXS

WAXS

Ageing of Hybrid 55 and Hybrid 60 at 545 °C (7 h) and 570 °C (4 h)

CHALMERS

Data analysis

- The *Q-*range in the SAXS data was not enough to allow model fitting
	- The volume of NiAl fraction could **NOT** be approximately determined from SAXS
	- The mean size was extracted from the "Kratky plot"
	- *R* ≈ *R^m* **ASSUMING TYPICAL SIZE DISTRIBUTIONS**
- Volume fraction was determined from the relative intensity of the (100) NiAI and (200) α' peaks
	- **ASSUME** $(Ni_{0.4}Fe_{0.1})(Al_{0.4}Fe_{0.1})$
	- Approximate DW factors

Time-resolved data with 10 s temporal resolution throughout the ageing

Precipitation starts already during heating

Precipitation kinetics

Bulk diffusion: *n*=0.33 Dislocations/low angle boundaries: *n=0.25* High angle boundaries: *n=*0.2

Influence of heating rate

Development of lattice mismatch

What about the matrix?

Behaviour during heating

What about the matrix?

F \overline{a} c 1.2 $.008$ 1.015 $\begin{array}{ccc}\n\text{Relative lattice parameter} & \text{1} & \text{1} & \text{0} \\
\text{Relative lattice parameter} & \text{1} & \text{0} & \text{0} \\
\text{1} & \text{1} & \text{0} & \text{0} \\
\text{2} & \text{2} & \text{1} & \text{0}\n\end{array}$ H55 545 °C/7 h H55 545 °C/7 h Relative lattice parameter H55 570 °C/4 h 1.1 H55 570 °C/4 h H60 545 °C/7 h $\begin{array}{ccc}\n\text{Relative intensity} & \rightarrow & \text{se} \\
\text{so} & \rightarrow & \text{se} \\
\text{so} & \rightarrow & \text{se} \\
\end{array}$ $\begin{array}{ccc}\n\text{Relative intensity} & & \rightarrow \\
\text{Deating on} & \text{the} & \rightarrow \\
\text{De} & \text{be} & \rightarrow \\
\text{A} & & \text{The} & \rightarrow\n\end{array}$ H60 545 °C/7 h H60 570 °C/4 1.01 H60 570 °C/4 h 1.005 0.4 0.8 0.2 0.998 600 $\overline{0}$ 200 400 Ω 200 400 600 200 400 600 $\overline{0}$ 200 400 600 Temperature [°C] Temperature [°C] Temperature [°C] Temperature [°C] d d **b** lb 1.1 1.5 1.4 1.2 $\begin{array}{c}\n\text{Relative FWHM} \\
\text{Relative 1.2} \\
\text{0.8}\n\end{array}$ Relative FWHM Asymmetry
Asymmetry
1.1 $\begin{array}{c}\n\text{Asymmetry} \\
\text{S} \\
\text{S} \\
\text{A} \\
\text{A} \\
\text{B} \\
\text{B} \\
\text{B} \\
\text{A} \\
\text{B} \\
\text{B} \\
\text{A} \\
\text{B} \\
\text{C} \\
\text{D} \\
\text{A} \\
\text{D} \\
\text{C} \\
\text{D} \\
\text{A} \\
\text{D} \\
\text{E} \\
\text{A} \\$ $\overline{2}$ 0.6 0.7 0.6 0.9 0.6 0.4 200 Ω 200 400 600 0 200 400 600 Ω 200 400 600 $\mathbf{0}$ 400 600 Temperature [°C] Temperature [°C] Temperature [°C] Temperature [°C]

Through-cycle development

Cross-check and validation using atom probe tomography

- Assumed chemistry of NiAl seems valid (good news for volume fraction determination)
- Atom probe analysis after full ageing shows slightly larger particle sizes
- Can be explained a polydispersity slightly larger than assumes

Take-home messages

Time-resolved in situ investigations provide much **more details** than conventional investigations of pre/post heat treatment – and **removes** sample-to-sample and treatment-to-treatment **variations**

Combined SAXS/WAXS measurements are extremely useful to provide a **complete picture** of the precipitation processes in metallic materials

SAXS analysis is generally **more complex** than diffraction – **complementary data is often necessary**

> **Talk to the experts** at the facilities and in your network and make sure you plan your experiment well!

More reading

Most of the content of this presentation is available here:

Magnus Hörnqvist Colliander, Steve Ooi, Kristina Lindgren, Timo Müller, and Mattias Thuvander: *In Situ Measurements of NiAl Precipitation During Aging of Dual Hardening Hybrid Steels*. Metal. Mater. Trans. 55A (2024) 4146. d*oi:* 10.1007/s11661-024-07536-z

For more information on SAXS for precipitation metallic materials have a look at these:

Alexis Deschamps and Frédéric De Geuser: *Quantitative Characterization of Precipitate Microstructures in Metallic Alloys Using Small-Angle Scattering.* Metall. Mater. Trans. 44A (2013) 77. doi:10.1007/s11661-012-1435-7

Frédéric De Geuser and Alexis Deschamps: *Precipitate characterisation in metallic systems by small-angle X-ray or neutron scattering.* Comptes Rendus Physique 13 (2012) 246. doi:10.1016/j.crhy.2011.12.008

CHALMERS UNIVERSITY OF TECHNOLOGY