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Division of Microstructure Physics

» Our research focuses on materials and how the
microstructure affects their properties.

* Engineering materials in close collaboration with
industrial partners.

» A few examples are steels for high temperatures as in
thermal power stations, coatings for cutting tools,
nickel-base alloys for aeroengines and alloys used in
the nuclear industry.

» We use electron microscopy and related techniques,
atom probe tomography, X-ray and neutron scattering
and diffraction

» -
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Research infrastructure at the Department of Physics

Chalmers Materials Analysis
Laboratory — CMAL

» A research Infrastructure and open to all researchers
at Chalmers University of Technology and University
of Gothenburg on equal terms.

» The lab offers a broad park of instruments and tools,
primarily in the fields of electron microscopy, X-ray
diffraction, optical microscopy and atom probe
tomography.

» Several powder diffractometers with sample
environments for in situ tests (up to 1500 °C) and a
state-of-the-art single crystal diffractometer.

* A high end, fully automated SAXS/WAXS/GISAXS
instrument with in situ capabilities -100 to 1000 °C
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Hybrid steels — A new family of dual-
hardening steels from Ovako.
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Hybrid Steel 55 | Engineering steel
Hybrid Steel 60 Bearing Steel

Yield Strength Hydrogen pre-charging: 0.5 M Na,S0O,, 5 mA/cm?, 20 h
(MPa) RBF: Stress level at 725 MPa, Runout at 10 million cycles, Failure by subsurface initiations
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200 52100 Hybrid steel 60 Bearing steel  Tool steel 1C-18Cr Hybrid steel  Stainless steel
Test Temperature (*C) AlIS| 52100 AISI H13 Als| 440C 55 AlSI 316L

u% runout =% runout hydrogen precharged

Andersson et al. ASTM STP 1623 (2020) doi: 10.1520/STP162320190163
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Precipitation hardened by a combination of nanoscale Lty
iIntermetallic NiAl (B) and chromium carbides SHALYERS
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Precipitation hardened by a combination of nanoscale
iIntermetallic NiAl (B) and chromium carbides

CHALMERS
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Jakob et al. Metall. Mater. Trans. 55A (2024) 870 doi: 10.1007/s11661-023-07291-7
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The questions

» Can we track the precipitation process in real-
time, throughout the full heat treatment?

* In which order do the phases (carbides and
intermetallic particles appear)?

» What are the kinetics of the precipitation
process(es)?

Methods

« Simultaneous small-angle scattering (SAXS)
and wide-angle scattering (WAXS) during heat
treatment at P21.2 at PETRAII

» SAXS for size and volume fraction
* WAXS for phase identification

CHALMERS
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Small-angle X-ray scattering resolves
“large” structures

CHALMERS

« X-ray scattering measures variations in electron density p

- Lattice planes (periodic variations in p on the order of A) scatter to large angles

« The scattering angle decreases with increasing interplanar spacing (periodicity in p)
« Variations at longer length-scales nm-um (e.g. precipitates) scatter to small angles (<1°)

» The larger the object the smaller the scattering angle

Pabit et al. Methods in Enzymology 469 (2009)301 ~ _ _---
doi: 10.1016/S0076-6879(09)69019-4 - =7
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How small angles?

WAXS (wide-angle scattering, diffraction)
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What information can we get from SAXS?
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The shape of the SAXS curve depends on shape and size (distribution)

The intensity depends on volume fraction and chemistry

Size
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McDowall et al. Soft Matter 18 (2022) 1577 Londofio et al. in Hanbook of Materials Characterization (2018)
doi:10.1039/D1SM01707A doi: 10.1007/978-3-319-92955-2_2
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What information can we get from SAXS?
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The shape of the SAXS curve depends on shape and size (distribution)

The intensity depends on volume fraction and chemistry

Lognormal size
distribution
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McDowall et al. Soft Matter 18 (2022) 1577 Londofio et al. in Hanbook of Materials Characterization (2018)
doi:10.1039/D1SM01707A doi: 10.1007/978-3-319-92955-2_2 2024-11-12
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Analysing SAXS data

« Small angle scattering is not as intuitive as diffraction

» Fitting of SAXS data can yield quantitative information
 Particle shape

» Size distribution
* Volume fraction
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* But it is complicated and requires accurate models
and complementary information

IR N
[ | I R |

* In many cases sufficient information can be obtained
by simplified analyses (as in our case)

g (nm™1)

Londorio et al. in Hanbook of Materials Characterization (2018)
doi: 10.1007/978-3-319-92955-2_2
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— Qmin

Debye-Scherrer rings

WAXS
_'_ 60 keV, 0.5%0.5 mm?

Linkam TS600
Water cooled T SAXS

Ar shielding gas WAXS Pilatus X CdTe 2M
VAREX XRD4343CT SDD 14.5m

SDD 2.8 m
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Qmax

Qmin

60 keV, 0.5x0.5 mm?

Linkam TS600
Water cooled
Ar shielding gas

For SAXS the Q-range is extremely ElEzE
Important — it defines the size range of
objects which can be resolved

Q-range depends on detector size and
distance, photon energy, beam stop

Requirements often in competition with
WAXS — a compromise is required

Vacuum flight tube

SAXS
Pilatus X CdTe 2M
VAREX XRD4343CT SDD14.5m
SDD 2.8 m

2024-11-12



WAXS
—'—

17

Qmax

Qmin

60 keV, 0.5x0.5 mm?

Linkam TS600
Water cooled
Ar shielding gas

,—\
2
[7)
c
o
]
c
=
o

WAXS (wide-angle scattering, diffraction)

Debye-Scherrer rings

WAXS
VAREX XRD4343CT
SDD 2.8 m

CHALMERS
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Ageing of Hybrid 55 and Hybrid 60
at 545 °C (7 h) and 570 °C (4 h)

60 keV, 0.5x0.5 mm? @ 1

Linkam TS600
Water cooled
Ar shielding gas | WAXS
- / VAREX XRD4343CT
SDD 2.8 m

CHALMERS

SAXS
Pilatus X CdTe 2M
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Data analysis

The Q-range in the SAXS data was not enough to allow model fitting

CHALMERS

* The volume of NiAl fraction could NOT be approximately determined from SAXS
* The mean size was extracted from the "Kratky plot’
* R =R, ASSUMING TYPICAL SIZE DISTRIBUTIONS

Volume fraction was determined from the relative intensity of the (100) NiAl and (200) o’ peaks

. ASSUME (Ni0.4Feo.1)(A|o.4Feo_1) 7100 J100 7200
Vg = ( R10°>/( 2 /Réoo + ¢ R(2190> RpM = v™?FfymLPe~?"

* Approximate DW factors
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Time-resolved data with 10 s temporal
resolution throughout the ageing
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Precipitation starts already during heating
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Precipitation kinetics
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Bulk diffusion: n=0.33
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Influence of heating rate
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Development of lattice mismatch

H55 545 °C/7 h
H55 570 °C/4 h
H60 545 °C/7 h
H60 570 °C/4 h

Ageing time [h]
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What about the matrix?
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What about the matrix?

Through-cycle development
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Cross-check and validation using
atom probe tomography

[ 545 °C/7 h

—— 545 °C/7 h lognormal fit
570 °C/5 h

———570 °C/4 h lognormal fit

-4

® H55545°C7h ® H55545°C7h
HS5 570 °C 4h H55 570 °C 4h

N

Radius [nm]

Distance [nm] Distance [nm]

» Assumed chemistry of NiAl seems valid (good news for volume fraction determination)
» Atom probe analysis after full ageing shows slightly larger particle sizes

» Can be explained a polydispersity slightly larger than assumes

28 2024-11-12
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Take-home messages

Time-resolved in situ investigations provide much more details than conventional
investigations of pre/post heat treatment — and removes sample-to-sample and
treatment-to-treatment variations

Combined SAXS/WAXS measurements are extremely useful to provide a complete
picture of the precipitation processes in metallic materials

SAXS analysis is generally more complex than diffraction — complementary data is
often necessary

Talk to the experts at the facilities and in your network and
make sure you plan your experiment well!

2024-11-12
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More reading

Most of the content of this presentation is available here:

Magnus Hoérngvist Colliander, Steve Ooi, Kristina Lindgren, Timo Miller, and Mattias Thuvander:
In Situ Measurements of NiAl Precipitation During Aging of Dual Hardening Hybrid Steels. Metal.
Mater. Trans. 55A (2024) 4146. doi: 10.1007/s11661-024-07536-z

For more information on SAXS for precipitation metallic materials have a look at these:

Alexis Deschamps and Frédéric De Geuser: Quantitative Characterization of Precipitate
Microstructures in Metallic Alloys Using Small-Angle Scattering. Metall. Mater. Trans. 44A (2013)
77.doi:10.1007/s11661-012-1435-7

Frédéric De Geuser and Alexis Deschamps: Precipitate characterisation in metallic systems by
small-angle X-ray or neutron scattering. Comptes Rendus Physique 13 (2012) 246.
doi:10.1016/j.crhy.2011.12.008

2024-11-12






	Slide 1: Understanding precipitation processes in steels through time-resolved high-temperature SAXS/WAXS experiments 
	Slide 2
	Slide 3: Division of Microstructure Physics 
	Slide 4:  Chalmers Materials Analysis Laboratory – CMAL 
	Slide 5
	Slide 6: Hybrid steels – A new family of dual-hardening steels from Ovako. 
	Slide 7: Precipitation hardened by a combination of nanoscale intermetallic NiAl (b) and chromium carbides
	Slide 8: Precipitation hardened by a combination of nanoscale intermetallic NiAl (b) and chromium carbides
	Slide 9: The questions
	Slide 10: Small-angle X-ray scattering resolves  “large” structures
	Slide 11: How small angles?
	Slide 12: What information can we get from SAXS?
	Slide 13: What information can we get from SAXS?
	Slide 14: Analysing SAXS data
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Data analysis
	Slide 21: Time-resolved data with 10 s temporal resolution throughout the ageing
	Slide 22: Precipitation starts already during heating
	Slide 23: Precipitation kinetics
	Slide 24: Influence of heating rate
	Slide 25: Development of lattice mismatch
	Slide 26: What about the matrix?
	Slide 27: What about the matrix?
	Slide 28: Cross-check and validation using atom probe tomography
	Slide 29: Take-home messages
	Slide 30: More reading
	Slide 31: Logotype

