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Division of Microstructure Physics

• Our research focuses on materials and how the 
microstructure affects their properties. 

• Engineering materials in close collaboration with 
industrial partners. 

• A few examples are steels for high temperatures as in 
thermal power stations, coatings for cutting tools, 
nickel-base alloys for aeroengines and alloys used in 
the nuclear industry.

• We use electron microscopy and related techniques, 
atom probe tomography, X-ray and neutron scattering 
and diffraction
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Chalmers Materials Analysis 
Laboratory – CMAL 

• A research Infrastructure and open to all researchers 
at Chalmers University of Technology and University 
of Gothenburg on equal terms.

• The lab offers a broad park of instruments and tools, 
primarily in the fields of electron microscopy, X-ray 
diffraction, optical microscopy and atom probe 
tomography.

• Several powder diffractometers with sample 
environments for in situ tests (up to 1500 °C) and a 
state-of-the-art single crystal diffractometer.

• A high end, fully automated SAXS/WAXS/GISAXS 
instrument with in situ capabilities -100 to 1000 °C
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Research infrastructure at the Department of Physics



Innovating materials for 
sustainable development

A competence centre for industrial sustainability.
Funded by Vinnova, Sweden’s Innovation Agency 
and 23 partners from universities (KTH, Chalmers 
LiU), institutes (RISE, Swerim) and companies.  
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Hybrid steels – A new family of dual-
hardening steels from Ovako. 
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Andersson et al. ASTM STP 1623 (2020) doi: 10.1520/STP162320190163
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Precipitation hardened by a combination of nanoscale 
intermetallic NiAl () and chromium carbides
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Andersson et al. ASTM STP 1623 (2020) doi: 10.1520/STP162320190163
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Precipitation hardened by a combination of nanoscale 
intermetallic NiAl () and chromium carbides

520 °C 6 h

650 °C 4 h

Jakob et al. Metall. Mater. Trans. 55A (2024) 870 doi: 10.1007/s11661-023-07291-7
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The questions

• Can we track the precipitation process in real-
time, throughout the full heat treatment?

• In which order do the phases (carbides and 
intermetallic particles appear)?

• What are the kinetics of the precipitation 
process(es)?
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Methods

• Simultaneous small-angle scattering (SAXS) 
and wide-angle scattering (WAXS) during heat 
treatment at P21.2 at PETRA III

• SAXS for size and volume fraction

• WAXS for phase identification

Jakob et al. Metall. Mater. Trans. 55A (2024) 870 doi: 10.1007/s11661-023-07291-7
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Small-angle X-ray scattering resolves 
“large” structures
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• X-ray scattering measures variations in electron density 

• Lattice planes (periodic variations in  on the order of Å) scatter to large angles

• The scattering angle decreases with increasing interplanar spacing (periodicity in )

• Variations at longer length-scales nm-m (e.g. precipitates) scatter to small angles (<1°)

• The larger the object the smaller the scattering angle

Pabit et al. Methods in Enzymology 469 (2009) 301
doi: 10.1016/S0076-6879(09)69019-4

2
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How small angles?
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• The shape of the SAXS curve depends on shape and size (distribution)

• The intensity depends on volume fraction and chemistry

What information can we get from SAXS?

Shape Size

Londoño et al. in Hanbook of Materials Characterization (2018) 
doi: 10.1007/978-3-319-92955-2_2

McDowall et al. Soft Matter 18 (2022) 1577
doi:10.1039/D1SM01707A
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• The shape of the SAXS curve depends on shape and size (distribution)

• The intensity depends on volume fraction and chemistry

What information can we get from SAXS?

Shape Size

Londoño et al. in Hanbook of Materials Characterization (2018) 
doi: 10.1007/978-3-319-92955-2_2

McDowall et al. Soft Matter 18 (2022) 1577
doi:10.1039/D1SM01707A

distribution
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• Small angle scattering is not as intuitive as diffraction

• Fitting of SAXS data can yield quantitative information

• Particle shape

• Size distribution

• Volume fraction 

• Chemistry

• But it is complicated and requires accurate models 
and complementary information

• In many cases sufficient information can be obtained 
by simplified analyses (as in our case)
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Analysing SAXS data

Londoño et al. in Hanbook of Materials Characterization (2018) 
doi: 10.1007/978-3-319-92955-2_2
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Qmax

Qmin

• For SAXS the Q-range is extremely 
important – it defines the size range of 
objects which can be resolved 

• Q-range depends on detector size and 
distance, photon energy, beam stop

• Requirements often in competition with 
WAXS – a compromise is required

SAXS

WAXS
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Ageing of Hybrid 55 and Hybrid 60
at 545 °C (7 h) and 570 °C (4 h)
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We couldn’t resolve 
the carbides 



2024-11-12

Data analysis
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• The Q-range in the SAXS data was not enough to allow model fitting

• The volume of NiAl fraction could NOT be approximately determined from SAXS

• The mean size was extracted from the ”Kratky plot”

• R ≈ Rm  ASSUMING TYPICAL SIZE DISTRIBUTIONS

• Volume fraction was determined from the relative intensity of the (100) NiAl and (200) ’ peaks

• ASSUME (Ni0.4Fe0.1)(Al0.4Fe0.1)

• Approximate DW factors

Qm
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Time-resolved data with 10 s temporal 
resolution throughout the ageing
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WAXS SAXS
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Precipitation starts already during heating
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Precipitation kinetics
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Bulk diffusion: n=0.33

Dislocations/low angle boundaries: n=0.25

High angle boundaries: n=0.2

𝑅 = 𝑘𝑡𝑛
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Influence of heating rate
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Development of lattice mismatch
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NiAl Matrix

a'

a

𝛿 =
𝑎𝛽 − 𝑎𝛼′

𝑎𝛽 + 𝑎𝛼′ /2



2024-11-12

What about the matrix?
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Behaviour during heating
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What about the matrix?

Through-cycle development
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Cross-check and validation using 
atom probe tomography

• Assumed chemistry of NiAl seems valid (good news for volume fraction determination)

• Atom probe analysis after full ageing shows slightly larger particle sizes

• Can be explained a polydispersity slightly larger than assumes

28
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Take-home messages

Time-resolved in situ investigations provide much more details than conventional 
investigations of pre/post heat treatment – and removes sample-to-sample and 

treatment-to-treatment variations

Combined SAXS/WAXS measurements are extremely useful to provide a complete 
picture of the precipitation processes in metallic materials

SAXS analysis is generally more complex than diffraction – complementary data is 
often necessary

Talk to the experts at the facilities and in your network and 
make sure you plan your experiment well!
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More reading
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Most of the content of this presentation is available here:

Magnus Hörnqvist Colliander, Steve Ooi, Kristina Lindgren, Timo Müller, and Mattias Thuvander: 
In Situ Measurements of NiAl Precipitation During Aging of Dual Hardening Hybrid Steels. Metal. 
Mater. Trans. 55A (2024) 4146. doi: 10.1007/s11661-024-07536-z

For more information on SAXS for precipitation metallic materials have a look at these:

Alexis Deschamps and Frédéric De Geuser: Quantitative Characterization of Precipitate 
Microstructures in Metallic Alloys Using Small-Angle Scattering. Metall. Mater. Trans. 44A (2013) 
77. doi:10.1007/s11661-012-1435-7

Frédéric De Geuser and Alexis Deschamps: Precipitate characterisation in metallic systems by 
small-angle X-ray or neutron scattering. Comptes Rendus Physique 13 (2012) 246. 
doi:10.1016/j.crhy.2011.12.008
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