

Understanding precipitation processes in steels through time-resolved high-temperature SAXS/WAXS experiments

Magnus Hörnqvist Colliander Department of Physics | Chalmers University of Technology

Steve Ooi, Kristina Lindgren, Timo Müller and Mattias Thuvander

Metal. Mater. Trans. 55A (2024) 4146 doi: 10.1007/s11661-024-07536-z

Chalmers University of Technology Department of Physics

a strength I

ATTACK COLORING

II

Division of Microstructure Physics

- Our research focuses on materials and how the microstructure affects their properties.
- Engineering materials in close collaboration with industrial partners.
- A few examples are steels for high temperatures as in thermal power stations, coatings for cutting tools, nickel-base alloys for aeroengines and alloys used in the nuclear industry.
- We use electron microscopy and related techniques, atom probe tomography, X-ray and neutron scattering and diffraction

Research infrastructure at the Department of Physics

Chalmers Materials Analysis Laboratory – CMAL

- A research Infrastructure and open to all researchers at Chalmers University of Technology and University of Gothenburg on equal terms.
- The lab offers a broad park of instruments and tools, primarily in the fields of electron microscopy, X-ray diffraction, optical microscopy and atom probe tomography.
- Several powder diffractometers with sample environments for *in situ* tests (up to 1500 °C) and a state-of-the-art single crystal diffractometer.
- A high end, fully automated SAXS/WAXS/GISAXS instrument with *in situ* capabilities -100 to 1000 °C

NEUTRON AND X-RAY SCIENCE FOR INDUSTRIAL TECHNOLOGY TRANSITIONS

Innovating materials for sustainable development

A competence centre for industrial sustainability. Funded by Vinnova, Sweden's Innovation Agency and 23 partners from universities (KTH, Chalmers LiU), institutes (RISE, Swerim) and companies.

Hybrid steels – A new family of dualhardening steels from Ovako.

		С	Si	Mn	Cr	Ni	Мо	v	AI
Hybrid Steel 55	Engineering steel	0.18	0.1	0.3	5	6	0.7	0.5	2
Hybrid Steel 60	Bearing Steel	0.28							

Andersson et al. ASTM STP 1623 (2020) doi: 10.1520/STP162320190163

Precipitation hardened by a combination of nanoscale intermetallic NiAl (β) and chromium carbides

Andersson et al. ASTM STP 1623 (2020) doi: 10.1520/STP162320190163

Precipitation hardened by a combination of nanoscale intermetallic NiAl (β) and chromium carbides

650 °C 4 h

Jakob et al. Metall. Mater. Trans. 55A (2024) 870 doi: 10.1007/s11661-023-07291-7 2024-11-12

The questions

- Can we track the precipitation process in realtime, throughout the full heat treatment?
- In which order do the phases (carbides and intermetallic particles appear)?
- What are the kinetics of the precipitation process(es)?

Methods

- Simultaneous small-angle scattering (SAXS) and wide-angle scattering (WAXS) during heat treatment at P21.2 at PETRA III
- SAXS for size and volume fraction
- WAXS for phase identification

Jakob et al. Metall. Mater. Trans. 55A (2024) 870 doi: 10.1007/s11661-023-07291-7 2024-11-12

Small-angle X-ray scattering resolves "large" structures

- X-ray scattering measures variations in electron density ρ
- Lattice planes (periodic variations in ρ on the order of Å) scatter to large angles
- The scattering angle decreases with increasing interplanar spacing (periodicity in ρ)
- Variations at longer length-scales nm-μm (e.g. precipitates) scatter to small angles (<1°)
- The larger the object the smaller the scattering angle

How small angles?

What information can we get from SAXS?

- The shape of the SAXS curve depends on shape and size (distribution)
- The intensity depends on volume fraction and chemistry

¹⁰⁶ 104 10² unit.) *I* (arb. ⁰⁰ 100 = 20 nmR = 10 nmR = 5 nm= 4 nm10-R = 3 nm= 2 nm10-6 0.1 0.01 1 $q (nm^{-1})$

McDowall et al. Soft Matter 18 (2022) 1577 doi:10.1039/D1SM01707A Londoño et al. in Hanbook of Materials Characterization (2018) doi: 10.1007/978-3-319-92955-2_2

Siz<u>e</u>

What information can we get from SAXS?

- The shape of the SAXS curve depends on shape and size (distribution)
- The intensity depends on volume fraction and chemistry

Size distribution

McDowall et al. Soft Matter 18 (2022) 1577 doi:10.1039/D1SM01707A Londoño et al. in Hanbook of Materials Characterization (2018) doi: 10.1007/978-3-319-92955-2_2

Analysing SAXS data

Londoño et al. in Hanbook of Materials Characterization (2018) doi: 10.1007/978-3-319-92955-2_2

- Small angle scattering is not as intuitive as diffraction
- Fitting of SAXS data can yield quantitative information
 - Particle shape
 - Size distribution
 - Volume fraction
 - Chemistry
- But it is complicated and requires accurate models and complementary information
- In many cases sufficient information can be obtained by simplified analyses (as in our case)

- For SAXS the *Q*-range is extremely important – it defines the size range of objects which can be resolved
- Q-range depends on detector size and distance, photon energy, beam stop
- Requirements often in competition with WAXS a compromise is required

WAXS

CHALMERS

WAXS

Ageing of Hybrid 55 and Hybrid 60 at 545 $^{\circ}\text{C}$ (7 h) and 570 $^{\circ}\text{C}$ (4 h)

Data analysis

- The Q-range in the SAXS data was not enough to allow model fitting
 - The volume of NiAl fraction could **NOT** be approximately determined from SAXS
 - The mean size was extracted from the "Kratky plot"
 - $R \approx R_m$ ASSUMING TYPICAL SIZE DISTRIBUTIONS
- Volume fraction was determined from the relative intensity of the (100) NiAl and (200) α ' peaks
 - **ASSUME** (Ni_{0.4}Fe_{0.1})(Al_{0.4}Fe_{0.1})
 - Approximate DW factors

$$V_{\beta} = \binom{I_{\beta}^{100}}{R_{\beta}^{100}} / \binom{I_{\beta}^{100}}{R_{\beta}^{100}} + \frac{I_{a'}^{200}}{R_{\beta}^{200}} R_{a'}^{hkl} = v^{-2} F_{hkl}^{2} m LP e^{-2W}$$

Time-resolved data with 10 s temporal resolution throughout the ageing

Precipitation starts already during heating

Precipitation kinetics

Bulk diffusion: n=0.33Dislocations/low angle boundaries: n=0.25High angle boundaries: n=0.2

Influence of heating rate

Development of lattice mismatch

What about the matrix?

Behaviour during heating

What about the matrix?

а С 1.2 1.008 1.015 Relative lattice parameter 1 0001 arameter 1 0001 barameter 1 0002 barameter 1 0002 barameter H55 545 °C/7 h H55 545 °C/7 h Relative lattice parameter H55 570 °C/4 h 1.1 H55 570 °C/4 h H60 545 °C/7 h Relative intensity 60 1 Relative intensity 9.0 8.0 8.0 H60 545 °C/7 h H60 570 °C/4 1.01 H60 570 °C/4 h 1.005 0.4 0.8 0.2 0.998 600 0 200 400 0 200 400 600 200 400 600 0 200 400 600 Temperature [°C] Temperature [°C] Temperature [°C] Temperature [°C] d d b b 1.1 1.5 1.4 1.2 Relative FWHM 1 8'0 Relative FWHM 8.0 6.0 1 Asymmetry 1.1 Asymmetry 80 L .2 0.6 0.7 0.6 0.9 0.6 0.4 200 0 200 400 600 0 200 400 600 0 200 400 600 0 400 600 Temperature [°C] Temperature [°C] Temperature [°C] Temperature [°C]

Through-cycle development

Cross-check and validation using atom probe tomography

- Assumed chemistry of NiAl seems valid (good news for volume fraction determination)
- Atom probe analysis after full ageing shows slightly larger particle sizes
- Can be explained a polydispersity slightly larger than assumes

Take-home messages

Time-resolved in situ investigations provide much **more details** than conventional investigations of pre/post heat treatment – and **removes** sample-to-sample and treatment-to-treatment **variations**

Combined SAXS/WAXS measurements are extremely useful to provide a **complete picture** of the precipitation processes in metallic materials

SAXS analysis is generally more complex than diffraction – complementary data is often necessary

Talk to the experts at the facilities and in your network and make sure you plan your experiment well!

More reading

Most of the content of this presentation is available here:

Magnus Hörnqvist Colliander, Steve Ooi, Kristina Lindgren, Timo Müller, and Mattias Thuvander: *In Situ Measurements of NiAl Precipitation During Aging of Dual Hardening Hybrid Steels*. Metal. Mater. Trans. 55A (2024) 4146. doi: 10.1007/s11661-024-07536-z

For more information on SAXS for precipitation metallic materials have a look at these:

Alexis Deschamps and Frédéric De Geuser: *Quantitative Characterization of Precipitate Microstructures in Metallic Alloys Using Small-Angle Scattering.* Metall. Mater. Trans. 44A (2013) 77. doi:10.1007/s11661-012-1435-7

Frédéric De Geuser and Alexis Deschamps: *Precipitate characterisation in metallic systems by small-angle X-ray or neutron scattering.* Comptes Rendus Physique 13 (2012) 246. doi:10.1016/j.crhy.2011.12.008

CHALMERS UNIVERSITY OF TECHNOLOGY