Opportunities for ML analysis and visualization at DanMAX

Mads Ry Jørgensen <u>mads@chem.au.dk</u> Innokenty Kantor <u>inkan@fysik.dtu.dk</u>

19"74

DanMAX: Real materials studied under realistic conditions at realistic time scales

Solvothermal reactor

M. Roelsgaard et al., Journal of Applied Crystallography. 2023, 56, 581-588

Investigating the formation of PbPd

A. B. Borup et al., Nanoscale. 2023, 15, 18481

Live azimuthal integration - and quick analysis

*A. Jensen et al., J. Synchrotron Rad., 2022, 29, 1420-1428

Beam focusing - imaging using μXRD and μXRF

μXRD (and μXRF) mapping

9

μXRD + μXRF imaging: Narwhale tusk

1 mm

~20 µm beam 10 µm step

PI: H. Birkedal, AU

3D-printing with template crystallites

Potassium sodium niobate (KNN), K_{0.5}Na_{0.5}NbO₃ was 3D printed with aligned needleshaped crystallites to introduce texture

Frederik H. Gjørup

3D-printing with template crystallites

Large crystallites \rightarrow Spotty diffraction data Azimuthally binned data still show texture

Frederik H. Gjørup

ML potential?

 Separation of diffraction signals based on appearance on 2D detector

X-ray diffraction contrast tomography (XRD-CT)

Azimuthal integration

XRD-CT: contrast is generated by crystal structure

A

Problem: locating very weak peaks over intense broad background

Tomographic imaging

UNPUBLISHED DO NOT DISTRIBUTE

Data: Tim Dyrby and Emma Thomson DTU

DANNAX

Scan of <u>unstained</u> human brain
Shows nerves, nerve bundles, and cells throughout the brain
Measured in ~1 minute

UNPUBLISHED DO NOT DISTRIBUTE

•Ovine Bone.

- •Clearly shows porosities
- •See density variance in dense materials
- •Measured in ~1 minute

Scan of the mantis shrimp eye
Pure phase scan, eye is <u>unstained</u>

Full volume is 296 Gvox
Measured in ~1 hour

DANNAX

Nerves

Overview

AI/ML in tomography

AI/ML in tomography

- Machine learning for segmentation and labeling
- Super-resolution enhancement

ML potential?Reconstruction artifacts identification

Reconstruction artifacts identification

- Can be done on single slice or fragments
- Requires a lot of experience to distinguish between them

DANMAX 23

Reconstruction artifacts identification

maxiv.lu.se/danmax

Mads Ry Jørgensen: mads@chem.au.dk

linkedin.com/company/danmax-maxiv

Innokenty Kantor: inkan@fysik.dtu.dk