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Motivation
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Database ?
• Big Data 

– Overwhelming size and 
complexity of the data

– Data is often simply stored 

→ Time and money are wasted

• Questions
– What to do with the data?

– How can we derive insights 
from it?

– What is relevant, what not?
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Motivation

• A purely automatic analysis is not or only partly possible, 
and in many cases not useful
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+ identical linear regression
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Visualization

• What is a visualization?
– It is NOT a static graphics, diagram, or image
– It IS a cognitive process that

• produces a mental model of the data in our brains

• supports a better understanding/insight

– „The purpose of visualization is insight, not pictures“
• Aims: discovery, decision making, explanation, …

→ Interactive, exploratory data analysis
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Ben Shneiderman (1999) 
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Visualization
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Database
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Visualization vs. Visual Analytics

• Visualization (Vis)
– Pure interactive visualization methods do 

not work for billions of data records

– Not enough pixels, too much clutter, …

• Visual Analytics (VA)
– Science of analytical reasoning 

facilitated by interactive 
visual interfaces

– Combines the strengths of 
humans (Vis) and computers 
(DM, ML)
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Showcases 

Group Web Site
https://liu.se/en/research/ivis 
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Current Research Areas @ iVis
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Selected Areas
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• Visual text analytics
• Visual analytics for XAI
• Network visualization

J. F. Kruiger et al. / Graph Layouts by t-SNE

Table 3: Neighborhood preservation metric n for rG = 2 (higher is
better), indicating how well the input (graph) and output (layout)
node-neighborhoods match. Cell colors encode n on the same row.

Table 4: Running time in seconds of tsNET and tsNET*.

4.7. Bundled layouts

Sect. 4.2 shows that tsNET can retain neighborhoods successfully,
at the expense of introducing a few long edges. We can reduce the
clutter created by these with the help of edge bundling, [vdZCT16].
For this, we bundle the long edges, but keep the short ones un-
changed (Fig. 3). This is easily done by modifying any exist-
ing general graph-bundling method to enforce a maximal edge-
displacement d as a function of the edge length, where we set
d = 0.25. The result is a ‘hybrid’ graph-drawing in which short
edges are straight lines (as in classical graph drawings) and long
edges are bundled, thereby reducing clutter. To our knowledge, this
is the first time that selective bundling has been applied in this way
to declutter the drawing of graphs. This method helps one clearly
see which parts of the graph layout have been ‘torn off’ by tsNET
to achieve a globally optimal node placement. Of course, bundling
is also applicable to tsNET* layouts. We chose the tsNET layouts
(most notably 3elt) to illustrate this idea as they contained more
long edges that could benefit from bundling.

4.8. 3D layouts

As the formulation of tsNET is independent of the output-space di-
mension, it is interesting to study its ability to produce 3D graph

Figure 3: tsNET unbundled (left) and bundled layouts (right) for
jazz, cage8, block_2000, and 3elt. Edge colors encode edge lengths
((dark) red = shortest, green = median, blue = longest).

layouts. To do this, we consider the problem of recovering geomet-
ric information from topological information present in 3D meshes,
similar to work presented in [GK01,Wal01]: Given a mesh (Fig. 4,
left), we consider the graph G given by its vertices V and cell-edges
E. Next, we use tsNET to create a 3D layout of G (Fig. 4, right).

The tsNET reconstructions preserve the local regular structure of
the input meshes (Fig. 4, right). This can be attributed to the fact
that the underlying t-SNE technique is very well suited to preserve
neighbors.

More importantly, we see that tsNET can reconstruct the high-
level structure of the input shapes well, see e.g., relative sizes and
positions of the horse’s head and four limbs. However, reconstruc-
tion of the exact positions of mesh parts is not possible. This is
not surprising, as Euclidean distances between nodes in the original
mesh are not reflected by their graph-theoretical distances. E.g., the
back hooves of the horse are geometrically quite close, but graph-
theoretically far away, and will therefore not be placed as close
together. Also, certain shape parts, such as the horse’s limbs, can
be articulated in the original mesh without significantly modifying

c� 2017 The Author(s)
Computer Graphics Forum c� 2017 The Eurographics Association and John Wiley & Sons Ltd.
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Figure 1: Overview of StanceXplore, showing English tweets from Sweden during May 2016 (case study from Sect. 4). The following filters are

applied according to each view: (a) non-NEUTRAL tweets; (b) hashtags related to #Eurovision , manually selected by the user using the hexagon

grid; (c) tweets originating from the county of Västra Götaland; and (d) from 9th to 16th of May 2016. Close reading of the tweets (e) shows the

users’ diverse opinions, their stances, and the classifier’s confidence (using Platt scaling [25]).

regions such as cities, counties, or states. This information is shown
in the Map view (Fig. 1c), along with a color encoding of the total
(possibly filtered) number of tweets of each region. In the example
from Fig. 1c, a log scale is used to improve the visibility of the
values, since the difference in the total number of tweets between
main and peripheral regions is very large. By interacting with the
map, the user can explore the specific stance distribution within each
region (Fig. 1c, bottom-right), switch between different administra-
tive levels of granularity (e.g. cities vs. counties), and filter the data
by limiting tweets to specific regions.

The temporal aspect of the corpus can be seen in the Timeline view
(Fig. 1d) as a stacked area graph that shows the number of tweets per
day for each color-coded stance. The used visual encoding is similar
to ThemeRiver [11], but we decided to use a fixed time axis as it
increased the legibility of the view. An interactive filter is located
below the timeline and allows the setting of a specific time range for
the analysis (in the example, the time range is between days 8 and
17 of May 2016).

Finally, the Tweets view (Fig. 1e) shows the full text of every
tweet that satisfies all the filters defined interactively. Besides each
tweet’s text, a small bar shows the stance category assigned to the
tweet (color) and the confidence of the classifier (size, computed
with Platt scaling [25]), with the minimum size (lowest possible
confidence) indicated by a dashed line.

4 CASE STUDY

In this section we illustrate the features of StanceXplore with a case
study on the use of the English language by Twitter users in Sweden.
The corpus was extracted using Twitter’s REST API [1] with filters
by language (English), country (Sweden), and time (May 2016).
The aim of this case study is to highlight the ability of StanceXplore
to support (i) free exploration of stance-classified data from social
media, (ii) detection of patterns and trends in stance-taking in social
media along temporal and geospatial dimensions, and (iii) the itera-
tive and dynamic testing of hypotheses with responsive interaction
and feedback from filtering. 1

We begin with the Stances view (Fig. 1a). It shows that NEUTRAL
is the most frequent result of the classification process. One expla-
nation for this is that the classifier’s training set was extracted from
political blogs, with no size restrictions. Tweets, on the other hand,
can be considered as fragmented discourse because of the limited
character size of the text (it can be hard to formulate complete sen-
tences within 140 characters) and the intervention of metacomments.
As a result, the classifier sometimes cannot decide with strong con-
fidence for a stance, and when no stances are detected the tweet
is classified as NEUTRAL. Another reason is the fact that stance is

1To better understand the dynamics of the user interaction, the reader is
encouraged to watch the video at: https://vimeo.com/230334496.
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Visual Text Analytics: StanceVis 
Visual Analysis of Sentiment and Stance in Social Media Texts

[Journal of Visualization, 23(6):1015-1034, 2020]
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https://link.springer.com/article/10.1007/s12650-020-00684-5 - Sec21
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Visual Text Analytics: EEVO 

Interactive optimization of embedding-based text similarity calculations 

[Information Visualization, 21(4):335-353, 2022]
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https://doi.org/10.1177/14738716221114372
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VA for XAI: t-viSNE 
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[IEEE  TVCG, 26(8):2696-2714, 2020]https://vimeo.com/404912503
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VA for XAI: StackGenVis 
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1077-2626 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2020.3030352, IEEE
Transactions on Visualization and Computer Graphics

StackGenVis: Alignment of Data, Algorithms, and Models for
Stacking Ensemble Learning Using Performance Metrics

Angelos Chatzimparmpas, Student Member, IEEE, Rafael M. Martins, Member, IEEE Computer Society,
Kostiantyn Kucher, Member, IEEE Computer Society, and Andreas Kerren, Senior Member, IEEE
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Fig. 1. Constructing performant stacking ensembles from scratch with StackGenVis: (a) a panel for uploading data sets and choosing
weights for performance metrics; (b) the history preservation panel with the composition and performance achieved by the user-built
stored stacking ensembles; (c) the comparison of the metamodel’s performance for both the active and stored stackings, based on four
performance metrics (linked to view (a) with a dice glyph showing four); (d) the three exploration modes for the algorithms, data, and
models; (e) the projection-based models’ space visualization, which summarizes the results of all the selected performance metrics for
all models; and (f) the predictions’ space visual embedding, which arranges the data instances based on the collective outcome of the
models in the current stored stack S6� (marked in bold typeface in (b)).

Abstract— In machine learning (ML), ensemble methods—such as bagging, boosting, and stacking—are widely-established ap-
proaches that regularly achieve top-notch predictive performance. Stacking (also called “stacked generalization”) is an ensemble
method that combines heterogeneous base models, arranged in at least one layer, and then employs another metamodel to summarize
the predictions of those models. Although it may be a highly-effective approach for increasing the predictive performance of ML,
generating a stack of models from scratch can be a cumbersome trial-and-error process. This challenge stems from the enormous
space of available solutions, with different sets of data instances and features that could be used for training, several algorithms to
choose from, and instantiations of these algorithms using diverse parameters (i.e., models) that perform differently according to various
metrics. In this work, we present a knowledge generation model, which supports ensemble learning with the use of visualization, and
a visual analytics system for stacked generalization. Our system, StackGenVis, assists users in dynamically adapting performance
metrics, managing data instances, selecting the most important features for a given data set, choosing a set of top-performant and
diverse algorithms, and measuring the predictive performance. In consequence, our proposed tool helps users to decide between
distinct models and to reduce the complexity of the resulting stack by removing overpromising and underperforming models. The
applicability and effectiveness of StackGenVis are demonstrated with two use cases: a real-world healthcare data set and a collection
of data related to sentiment/stance detection in texts. Finally, the tool has been evaluated through interviews with three ML experts.

Index Terms—Stacking, stacked generalization, ensemble learning, visual analytics, visualization

• Angelos Chatzimparmpas, Rafael M. Martins, Kostiantyn Kucher, and
Andreas Kerren are with Linnaeus University, Växjö, Sweden.

E-mail:
⇢

angelos.chatzimparmpas, rafael.martins,
kostiantyn.kucher, andreas.kerren

�
@lnu.se

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on

1 INTRODUCTION

Stacking methods (or stacked generalizations) refer to a group of en-
semble learning methods [45] where several base models are trained
and combined into a metamodel with improved predictive power [63].

obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Authorized licensed use limited to: LINNAEUS UNIVERSITY. Downloaded on January 12,2021 at 15:19:47 UTC from IEEE Xplore.  Restrictions apply. 

[IEEE  TVCG, 27(2):1547-1557, 2021]https://vimeo.com/449276614
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Network Visualization: OnGraX
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https://vimeo.com/135034649 [Journal of Graph Algorithms and Applications, 21(1):5-27, 2017]

https://vimeo.com/135034649
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Multilayer Network Visualization

Network Visualization: MLN-Vis
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https://doi.org/10.1109/TVCG.2023.3327402 [IEEE  TVCG, 30(1):469-479, 2024]

2D, 2.5D, or 3D? An Exploratory Study on

Multilayer Network Visualisations in Virtual Reality

Stefan P. Feyer , Bruno Pinaud , Stephen Kobourov , Nicolas Brich , Michael Krone ,

Andreas Kerren , Michael Behrisch , Falk Schreiber , and Karsten Klein

Fig. 1: Examples of layer arrangements evaluated in this study for multilayer network visualisation. Top: a hand-drawn sketch of
small graphs (3 layers) from an early design draft. Bottom: examples of visualisations in a virtual reality setting used during the
experiment. Note that 2D and 2.5D contains flat 2D areas for layers, whereas 3D is also for each layer a 3D representation. 2D
shows a small graph (3 layers) whereas 2.5D and 3D show larger graphs (7 layers).

Abstract—Relational information between different types of entities is often modelled by a multilayer network (MLN) – a network

with subnetworks represented by layers. The layers of an MLN can be arranged in different ways in a visual representation, however,

the impact of the arrangement on the readability of the network is an open question. Therefore, we studied this impact for several

commonly occurring tasks related to MLN analysis. Additionally, layer arrangements with a dimensionality beyond 2D, which are

common in this scenario, motivate the use of stereoscopic displays. We ran a human subject study utilising a Virtual Reality headset to

evaluate 2D, 2.5D, and 3D layer arrangements. The study employs six analysis tasks that cover the spectrum of an MLN task taxonomy,

from path finding and pattern identification to comparisons between and across layers. We found no clear overall winner. However, we

explore the task-to-arrangement space and derive empirical-based recommendations on the effective use of 2D, 2.5D, and 3D layer

arrangements for MLNs.

Index Terms—Network, Guidelines, VisDesign, HumanQuant, CompSystems.

1 INTRODUCTION

• Stefan P. Feyer and Karsten Klein are with the University of Konstanz, Life
Science Informatics. E-mail: {stefan.feyer | karsten.klein}@uni-konstanz.de.

• Bruno Pinaud is with Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR
5800, France. E-mail: bruno.pinaud@u-bordeaux.fr.

• Stephen Kobourov is with the University of Arizona. E-mail:
kobourov@cs.arizona.edu.

• Nicolas Brich is with University of Tübingen, Germany. E-mail:
nicolas.brich@uni-tuebingen.de.

• Michael Krone is with University of Tübingen, Germany and with New York
University, USA. E-mail: michael.krone@uni-tuebingen.de.

• Andreas Kerren is with Linköping University and Linnaeus University,
Sweden. E-mail: andreas.kerren{@liu.se, @lnu.se}.

• Michael Behrisch is with Utrecht University, NL. E-mail: m.behrisch@uu.nl.
• Falk Schreiber is with University of Konstanz and Monash University.

E-mail: falk.schreiber@uni-konstanz.de.

In a variety of applications, we use networks with different types of
entities and relations to model our data holistically. Knowledge graphs,
for instance, combine data from diverse knowledge bases to express
relations between genes, drugs, diseases, and pathogens in biomedical
applications [41] and, more broadly speaking, allow for inference of
previously undiscovered patterns [34, 60, 61, 66]. In general, entities
and relations of one type form layers within the encompassing net-
work, and the analysis of these networks requires taking the multilayer
structure explicitly into account. Specifically, each node in these so-
called multilayer networks (MLNs) needs to be scrutinised concerning
the layer it belongs to, i.e., interrelations within its layer and also the

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx
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Figure 7. Average local errors for selected datasets and projections
(Sec. 7.4.2).

known algorithms in the literature. We evaluate these
techniques on these datasets along five quality metrics.
In contrast to all similar evaluations so far, we study
quality variation as a function of (a) the dataset traits;
and (b) algorithm parameters. The entire benchmark
(datasets, measurements, source code for techniques and
measurement tools) is public [112], being the first such
benchmark in the dimensionality reduction field. The entire
workflow is implemented in Python. Specific projection
implementation details are given in Tabs. 4 and 7.

Best-quality projections: Our studies showed that t-SNE,
UMAP, PBC, and IDMAP yield the best quality vs the
considered metrics and over the considered datasets,
when using preset parameters. Our parameter analysis
also shows that these techniques yield high quality quite
consistently when their parameters are tuned. We also
provide parameter presets and show that using these
decrease the optimal quality of the studied projections only
slightly. All in all, this tells end users that choosing one of
these four techniques, with its respective parameter presets,
can consistently deliver good quality.

Similar-quality projections: We compare all 44 studied
projections from the perspective of all 5 quality parameters.
Our results show that the “space” of projection techniques
can be easily ordered, from low to high quality ones, and
that the notion of average quality (using the 5 proposed
quality metrics) does make sense—see smooth color-coded
average quality gradient in Fig. 4. This helps end users
to see which projections behave similarly quality-wise,
supporting trade-off scenarios, when one wants to swap
a technique for a similar-quality one that has, e.g., a more
robust, or faster, implementation.

Refining decisions: We analyze the top-four best quality
techniques from the additional viewpoints of speed,
distance preservation, and error spread over the 2D space.
Our results show that the four techniques are quite different,
even if their scalar (aggregated) quality metrics are quite
similar. We discover that UMAP and PBC are about
two orders of magnitude faster than t-SNE and IDMAP.
However, UMAP has the worst distance-preservation
pattern of the four. This offers directly actionable ways for
end users to select a suitable projection from this set of
four depending on their desires vs speed and/or distance
preservation.

Limitations: Densely covering the huge space of dataset
types, projection techniques, algorithm parameters, and
quality metrics is definitely very hard. Our work so far
represents only a limited sample B of this space (Sec. 2.1).
However, this sample is considerably denser than other
similar samples (evaluations) present in the literature, in
all the considered aspects (datasets, parameter values, qual-
ity metrics, and number of studied projection techniques).
Hence, we argue that our work is a necessary (but definitely
not final) next step from current state-of-the-art in the quest
of quantitatively evaluating the projection landscape.

We make all our results (methodology, data, code, mea-
surements) open and public [112], so B is a ‘live benchmark’
that will grow as us, or others, will add datasets, techniques,
and metrics to it. This way, coverage can increase over
time with incremental efforts, sparing professionals from the
very large effort required to set up such work from scratch.
Concrete directions in which we plan to extend this work
include (a) considering more dataset traits (Tab. 3), such
as amount and type of noise; and (b) adding metrics that
quantify the perceived quality of projections for given tasks,
e.g., cluster separation [101], [104], [106], and metrics that
consider the robustness of projection to noise.

9 CONCLUSION

This paper presents a survey of multidimensional projection
techniques from the perspective of end users interested in
understanding how specific algorithms, and their parame-
ter settings, perform on specific types of high-dimensional
datasets. For this, we proposed a methodology for construct-
ing a benchmark that includes 44 techniques (including var-
ious combinations of their parameter values), 18 datasets,
and 7 quality metrics. We propose an automatic way to
evaluate this benchmark, and also several visualizations to
analyze the gathered data. Our main contribution is making
the methodology, benchmark, and related artifacts (datasets,
techniques, metrics, visualizations, related code) publicly
open, so interested researchers can study these results but
also contribute to enrich the benchmark. Additionally, our
current evaluation of the benchmark can be used to choose
projection that score best on any of the evaluated criteria,
similar to each other, or on global average quality, with t-
SNE, UMAP, PBC, and IDMAP being the top-ranked ones
in the latter respect.

Many extensions are possible based on the current foun-
dation. First and foremost, given its open source nature, our
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