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ML ID Project Overview

Background

e Joint initiative between Insertion Devices group and Software Group, driven by the ID team as a
CPO project.

e First fully fledged project carried out with Machine Learning as main tool.

e Beam orbit distortions by Insertion Devices currently corrected with measured feed-forward tables
e \ery time consuming

e Tables might be invalidated over time, or with different machine parameters (e.g. machine
upgrades)

e New modes of ID operation can require several hundreds of measurement points e.g. universal
mode.

e Prototyping of ML models that effectively replace measured feed-forward tables




Beam Orbit Distortion from Insertion Devices

e Current Challenge
* Insertion Devices (IDs) introduce orbit distortions due to residual field integrals.
 Compensation relies on feed-forward tables, which are:
* Time-consuming to measure
e Sensitive to changes in accelerator settings
e Difficult to scale for complex ID configurations (e.g., Universal Mode)
* Motivation for ML
* Automate compensation without extensive measurements
* Improve maintainability and adaptability of orbit correction
* Prepare for future operational scenarios and optical changes
e Approach
* Use archived operational data (ID gaps, BPMs, correctors)
* Train neural network models to replicate and eventually improve feed-forward behavior
e Embed ML model into control loop via Tango Device Server
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 Hosted on OKD (OpenShift)
) * Initial deployment for testing and integration
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Embedding ML into the
Orbit Control Loop

Control System Integration

« ML model hosted in a Tango Device
Server

« Interfaces with MAX IV control system for
real-time inference

Inputs & Outputs

* Inputs: BPM positions (up/downstream
X/Y), ID gap, ring current

» Outputs: Corrector magnet currents
(up/downstream X/Y)

Functionality
Synchronizes and transforms incoming
data
Performs periodic inference
Translates predictions back to control
system space
Logs predictions and computes
evaluation metrics(TBD)

Model Management

* Models loaded from local files or MLFlow
registry(Need refactoring)

« Supports flexible versioning and
deployment
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Experimental Results
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- Experimental Results

Feedforward Compensation Machine Learning Compensation

* ML model closely
approximates feedforward
correction across the ID gap
range

« Shows reduced disturbance
peaks at smaller gaps —
improved local adaptation

- Some divergence at larger

gaps (>30 mm), likely due to
limited training data
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« Demonstrates feasibility of ML-
based orbit compensation
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. Toward Robust and Adaptive ML-
. Based Orbit Control
0 200 W 600 800 | | * Live Evaluation Metrics (TBD)
Distortions on BPMs * Integrate real-time performance metrics into
monitoring tools
Feedforward Compensation Machine Learning Compensation « Track model accuracy, prediction drift. and orbit
stability
» Enable alerts for performance degradation
+ Retraining and Deployment Policies (TBD)
+ Define triggers for retraining:
« Data shift detection
+ Degeneration metrics
« Orbit deviation thresholds
» Establish rollback mechanisms and fallback models
+ Automate model registration and deployment via
MLFlow
* Goal
» Build a resilient control loop that adapts to
changing conditions
N - o _ ) o * Ensure safe and maintainable integration of ML in
o Ml sammay - - - * R —— - operations
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