MAX IV Control System

Áureo Freitas

Agenda

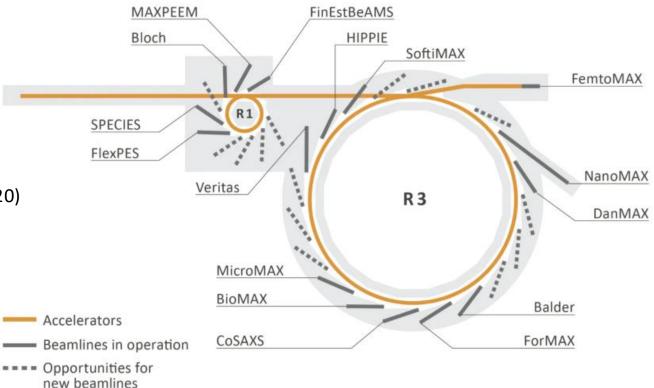
- Introduction
- Control System Overview
- Tango
- Architecture
- Workflow
- Conclusion

Introduction

3 accelerators:

- Full energy injector Linac with SPF
- 1.5 GeV storage ring
- 3 GeV storage ring
- 4 Diagnostic beamlines (TDC, B105, B302 and B320)

16 beamlines in operation:


- 24 branches
- 1 in construction SinCrys at DanMAX

1 beamline in construction:

- <u>TomoWISE</u> founded by <u>WISE</u>
- Full-field tomography, 20 to 65 keV
- 10¹² ph/s and and 45 mm x 4.5 mm beam

10 support labs/systems:

KITSLAB, MagLab, LaserLab, Cryo, GunLaser, SEDSMAX, OpticsLab, SPM, NoMad and DummyMAX

Control System Overview

TΔNGÂ

Tango toolkit for SCADA

98% of devices servers are written in Python

On accelerators we have:

- ~15,100 devices servers -> equivalent to EPICS IOC
- ~36,500 configuration properties -> similar parts of EPICS .db
- ~61,000 commands -> equivalent to EPICS PV
- ~105.300 attributes -> equivalent to EPICS PV

Sardana for scanning and data acquisition

See flyscan sessions for Sardana details.

Origins & Architecture

- Developed at ESRF in 1999
- Based on a central configuration database

Devices

- **Devices** act as microservices software or hardware components
- Devices belong to a Device Class and have a unique 3-part name: Domain/Family/Member (D/F/M)
- Devices are stateful and accessed via a standard API
- Devices can be composed from other devices (hierarchical architecture)

Attributes

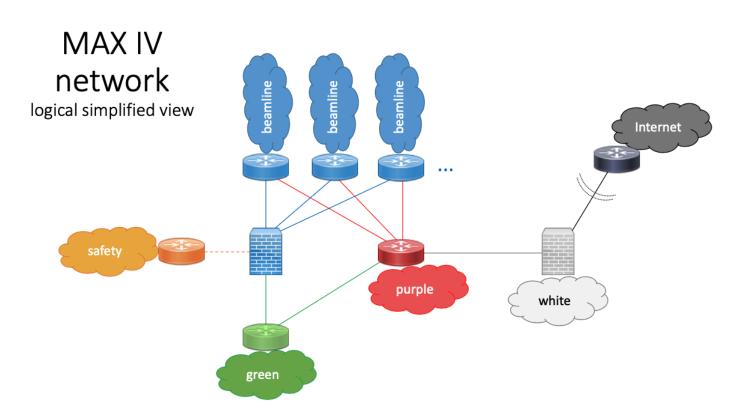
- Represent data fields clients can Read / Write / Subscribe to
- Support event-driven updates (via ZeroMQ)
- Attributes can be memorized in the database

- Represent actions: e.g., On, Off, Move, Calibrate
- Support typed arguments and results
- Executed by clients to control device behaviour

- Stored in the database to configure devices at startup
- Can be set at attribute, device, class, or global level
- Accept any Tango data type

Machine State Machine

- Every device has a State (14 predefined discrete values); Colour coded
- Each device class includes a **State Machine** to manage transitions
- Possible states: ON, OFF, CLOSE, OPEN, INSERT, EXTRACT, MOVING, STANDBY, FAULT, INIT, RUNNING, ALARM, DISABLE and UNKNOWN



Architecture - Network

- **Q** Color-Coded Segmentation
- Blue Beamlines
- ► Each beamline is **isolated** from others
- Green Accelerator Systems
- ► Includes **PSS** (Personnel Safety System) and **MPS** (Machine Protection System)
- Purple High Data Throughput Zone
- ► Covers **detectors**, **BPMs**, **storage**, **and compute** resources
- White Office Network
- ► General-purpose servers, desktops, user services
- Safety Dedicated to Gas Systems
- Controlled Access & Security
- Jump Hosts, VPN, and Firewalls control traffic between segments
 - ► Example: **Beamline** → **Accelerator** access is strictly regulated

Architecture - Technologies

% Control System Toolkit

TANGO – one control system instance per system

Operating System

Rocky Linux (Enterprise-grade Linux distribution)

Virtualization Platform

VMware for infrastructure and system isolation

Programming Languages

Python, C++, and Java

Device Configuration Database

MariaDB for storing TANGO device and property definitions

Archiving System

hdb++ on TimescaleDB

Custom-built data viewer: Archviewer

Alarm System

<u>Achtung</u> – in-house system, inspired by <u>PANIC!</u>

Alarm Notifications

Notify – developed in collaboration with ESS

Architecture - Technologies

<u>Taurus</u> (based on PyQt) <u>Taranta</u> (Web-based interface)

Timing System

MRF – Micro-Research Finland timing hardware

Communication Protocol

Ethernet-based across systems

% Configuration Management

Ansible for system provisioning and automation

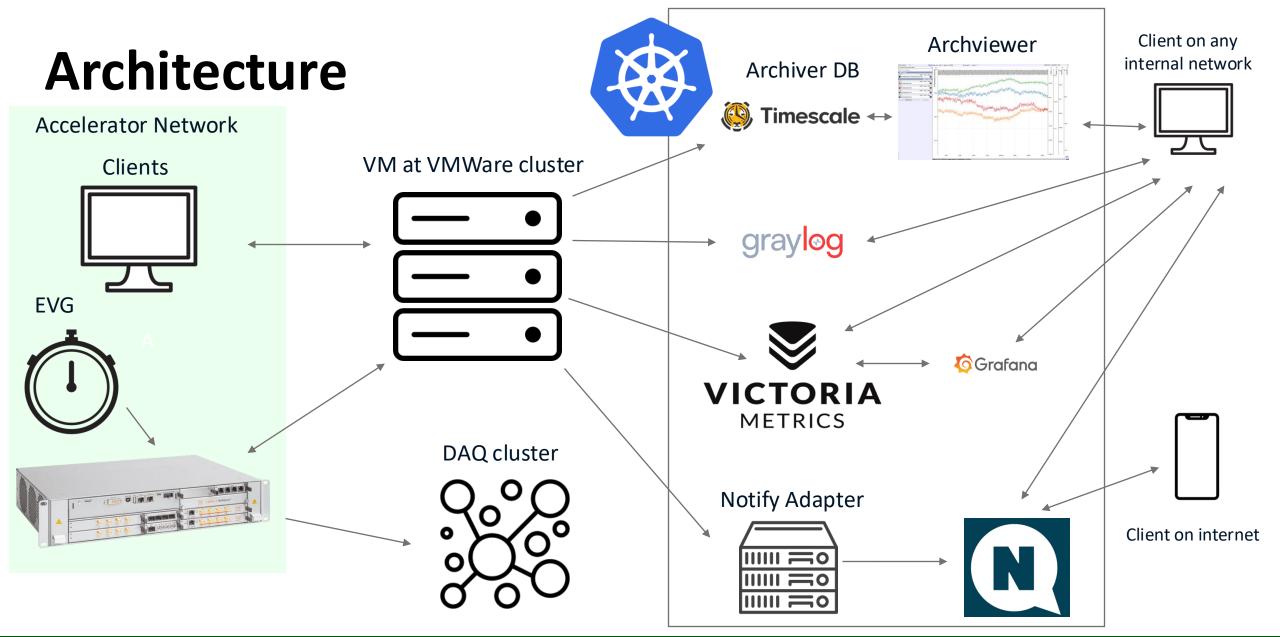
Source Code Management

Primarily internal GitLab

Gradual migration to <u>public gitlab</u> for selected projects

CI/CD Pipeline

GitLab CI integrated with Ansible for deployment


Monitoring & Alerts

Grafana for metrics dashboards **Graylog** for centralized logging and log analysis

Scanning & Data Acquisition

Sardana – flexible framework built on TANGO

Archviewer

Main Features

Attribute Search:

Locate attributes by full name or wildcard (e.g., */pressure). Add attributes to left/right Y axes or create new ones.

Attribute Controls:

Customize colour, style, and aggregation function.

Download data in TSV or JSON format.

Y-Axis Management:

Each axis has individual settings: Log scale, Auto scale, visibility toggle, and manual limits.

Shared attributes on an axis use the same scale.

Time Range Control:

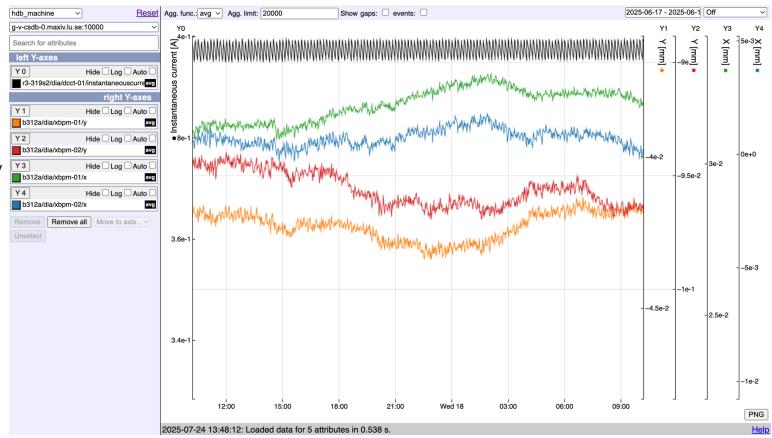
Adjustable via calendar, presets, or mouse interaction.

Supports Live Mode (auto-updating latest data view).

Advanced Functionality

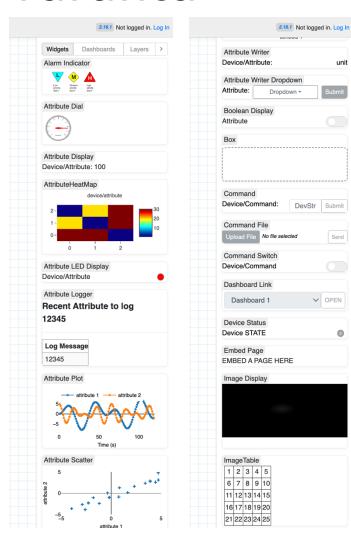
Aggregation:

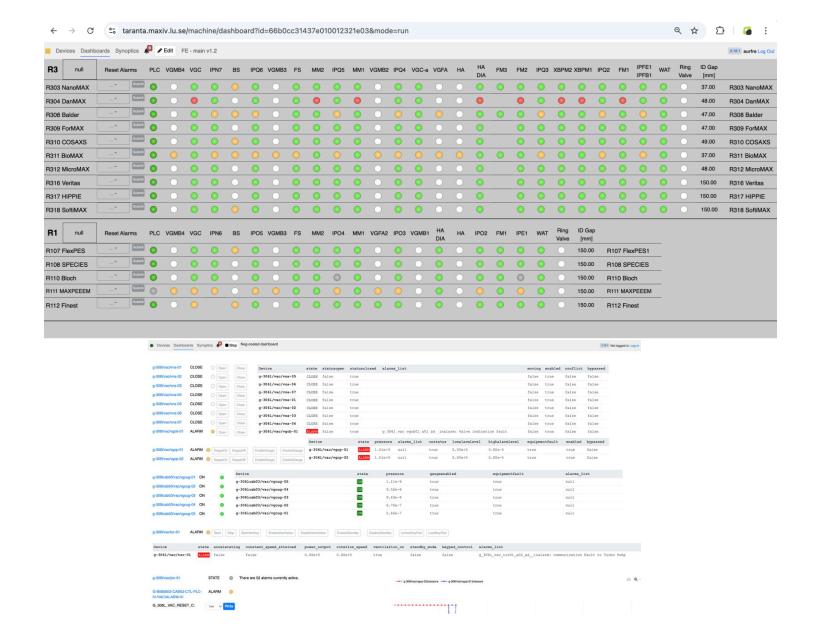
Reduces data volume by using functions like avg, min, max. Automatically triggered for large datasets; customizable via aggregation limit.

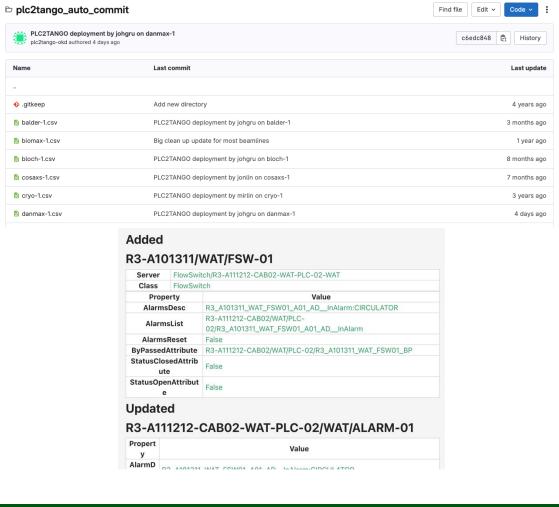

Multiple Databases:

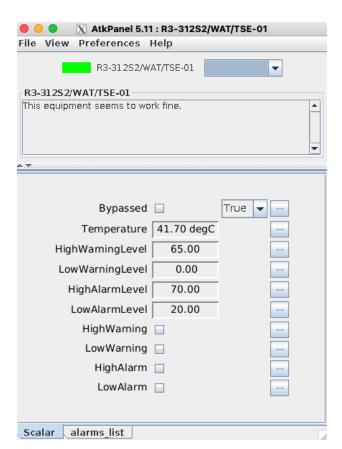
Attributes from different databases can be plotted together.

Data & Plot Export:


Download plot as PNG.


Use URL to save/share specific views


Taranta



PLC2Tango

S Controls Team

- Responsible for the software layer of the Control System
- Collaborates closely with other technical groups

Team Composition

- **10** permanent staff
- 4 consultants

Distribution

Each Controls team member acts as the Contact Person for 2−3 system
 (⇔ responsible for follow-up, coordination, and support)

Solution Solution Solution

- Transitioning toward a team-based structure
- Exploring **Kanban** for planning and tracking work

Software Group

MX

- Mirjam
- Alberto 50%
- Elmir
- Fabien
- Matheus (July 2nd)
- Recruitment
- Dominika
- Pawel

Controls

- Áureo
- Benjamin
- Anton
- Ben
- Dmitry
- Henrique
- Johan
- Lin
- Vanessa
- Yimeng
- Recruitment
- Recruitment
- Hanno
- Juanzi
- Lukas
- Wojtek
- Consultant

Applications

- Carla
- Alberto 50%
- Angshuman
- Emil
- Martin
- Moa
- Recruitment
- Recruitment (DUO)
- Jonatan

- **Shared Responsibilities**
- Infrastructure Group
 - Manages clusters, storage, virtualization, and networking
- Electronics Group
 - ► Handles hardware installation, schematics, motion systems, and timing
- Detectors & Scientific Data Group
 - Manages detector interfaces, live view tools, and analysis pipelines
- MX Team Software Group
 - ► Responsible for Crystallography beamlines: **BioMAX** & **MicroMAX**
- Applications Team Software Group
 - ► Develops web-based user interfaces (e.g., Taranta), data management systems and Digital User Office

Magnus Berglund

Development Cycle: Operates on a 2-week sprint cycle

Work Backlog Categories

Projects

- ► Long-term, externally or internally funded
- ► Managed by the Central Project Office (CPO)
- Sometimes grouped into Programs

Operation Projects

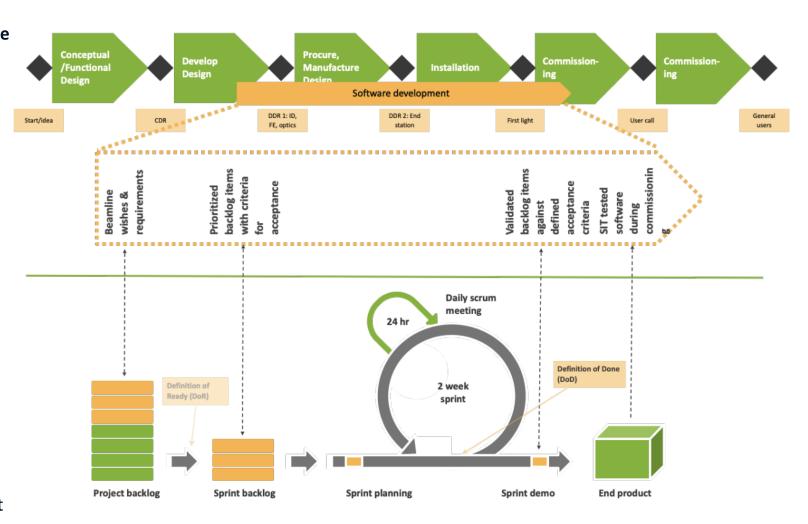
- ► Short-term tasks (~2–3 weeks)
- Managed by the Beamline Office (BO)

Operations

- Day-to-day tasks:
- ► Maintenance, issue resolution, user support, and small feature requests
- Regular Meetings

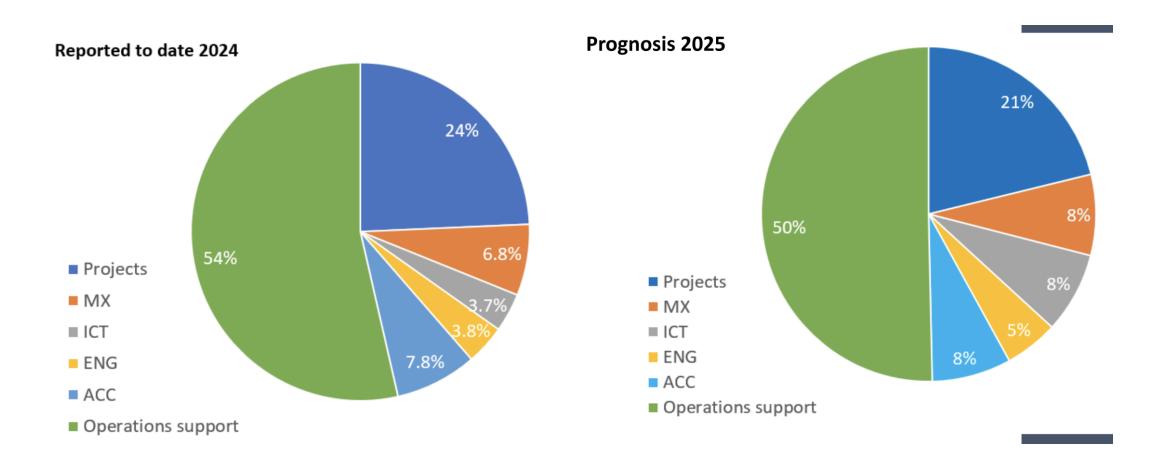
Weekly Beamline Operations Meeting

Weekly Accelerator Operations Meeting



Not owned by the Controls team

Priorities are driven by external stakeholders and coordinating groups



Taiga – used for user story tracking and task management

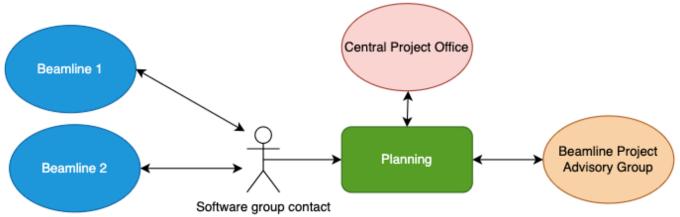
Workflow - Ressource distribution

- From Backlog to Plan
- Beamline Contacts and Project Groups propose items for the upcoming sprint
- Discussed during the Planning Meeting
- 📊 Estimation & Planning
- Team Estimation Meeting: effort and feasibility assessment
- Group Manager (GM) and Team Leads (TLs) review and clean up the sprint plan
- Priorities aligned with CPO and BLOPS (Beamline Operations)
- 🧑 💻 Task Execution
- Team members self-assign tasks
- Task lifecycle:
 In Progress → In Review → In Validation → In Deployment → Done
- Ad-hoc tasks allowed for urgent/emergency issues

Deployment Routines:

Beamlines

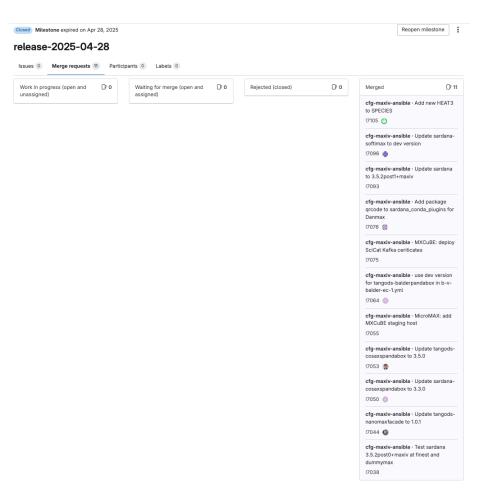
- Monday deployment window
- Major deployments discussed in the Beamline Operations Meeting
- ► Changelog shared via mailing list (based on GitLab milestone)
- Deployed using Ansible with a scheduled deployment crew


Accelerators

- Deployments planned during Accelerator Operations Meeting
- Evaluated in coordination with other activities
- ► Uses <u>J5</u> stack for scheduling and tracking maintenance
- **More Info**

See **Operational Support** session for further details

Planning workflow:



Technology Readiness Level TRL:

TRL Level	TRL 1	TRL 2	TRL 3	TRL 4	TRL 5	TRL 6	TRL 7	TRL 8	TRL 9
Color code									
MAX IV		Basic simulation /		Sub system test	System test	Technology fully	Technology validated	Technology	Technology
definition		calculation completed	laboratory / workshop that elements of the			implemented and fully verified	with (experts, stakeholders)		operationally in multiple environments
delilition			concept are feasible			Vormod	otakonoladio)		or standard operation
									with bread and butter
									users
Test env.		Theoretical	Laboratory	Component test rig			Operational		Operational
					interfaces	operational environment	environment	environment	environment
lavel consent		Formulate project	Formulate Project	BL/ACC/Orderer- no	BL/ACC/Orderer- no	BL/ACC/Orderer- no	"Friendly/Expert	"End user/s"	"End users"
Involvement		Tormulate project	,	end users	end users		users"	Liid dsei/s	Life disers
Support		Project team		Project team			Project team	KITOS & on call	KITOS & on call
TRL	TRL 1->2	TRL 2->3	TRL 3->4	TRL 4->5	TRL 5->6	TRL 6->7	TRL 7->8	TRL 8->9	
Level Criteria		Discuss with other		component	Verified by		Acceptance after X	Proven Performance	
Level Criteria	l	subject matter expert		developed and tested	,		beamtime with	1 TOVETT CHOITIGHEE	
	l		developed and tested				end-user		
	l	real use case	,						
Operation	Operation No Impact on operation			Removable from	Lower the overall leve	el of operation mode			
					operation modes				
Time Frame					Transition should be minimal in time e.g criteria evaluation have to be prepared in				· ·
Feature			core feature	component	System fully				
				implemented	implemented				
Example			,	Tango device with	Complete software				
				standard interface	and hardware suite				
Test			Unit tests	Integration tests	Verification			User feedback has	
								been positive	

Milestone example:

Sprint example:

Sprint	265	2025-06-13 - 2025-06-27				
My ta:	isks					
	ID	Title	Sprint	Points	Status	Assigned to
+	7940	[Issue] Finest: Timeout when changing EPU config	Sprint 265	2	Novo	
+	7937	Cont scans: study flexpes ID energy for trajectory preparation	Sprint 265	3	In validation	Lin Zhu
+	7936	Cont scans: make velocity restoration method more robust	Sprint 265	3	In validation	Wojciech Kitka
+	7932	Species GAS: mass flow regulator update for new OTD	Sprint 265	2	Terminado	Áureo Freitas
+	7945	PEAK: improvements from integration testing at HIPPIE - 35	Sprint 265	5	Terminado	Anton Joubert
+	7946	Eng Prog: VAC: continue VACCA updates	Sprint 265	2	In validation	Hanno Perrey
+	7869	Balder (DAQ 2): configure Eiger for either SPM or TotalTriggers	Sprint 265	5	Em andamento	Dmitry Egorov
+	7956	BioSAXS: Manager DS prototype	Sprint 265	5	Em andamento	Lukas Wittenbecher
+	7934	[DUO keep alive]:Matabase:Review all the reports and fix the broken ones [Part 7]	Sprint 265	3	Novo	Angshuman Chatterjee
+	7942	DUO: Move all the blob data to the filesystem from the EXPREPATT table	Sprint 265	5	Terminado	Alberto Nardella
+	7933	[MACH4] - fix trajectory motor ALARM state and add close traj point position function	Sprint 265	8	Terminado	Vanessa Silva
+	7935	[SOS] Tango 10 upgrade: tango-db and os upgrade (minor version)	Sprint 265	1	Terminado	Áureo Freitas
+	7938	[BPAG] Make wrapper for sequencer energy scan macro	Sprint 265	5	Terminado	Áureo Freitas
+	7943	DanMAX - Add rotary min value to pcap	Sprint 265	2	Terminado	ext-juashi
+	7944	Acc Ops: Investigate line positions not being stored in Basler camera	Sprint 265	3	In validation	Hanno Perrey
+	7947	Elogy: update elogy2	Sprint 265	1	Em andamento	Johan Forsberg
+	7948	Veritas: memory leak in sampletracker GUI	Sprint 265	2	In review	Johan Forsberg
+	7955	[scicat] update certificates	Sprint 265	1	Em andamento	Emil Gunnarsson
+	7959	[Unplanned] plc2tango: Unable to create facade devices for subsystem DIA on machine	Sprint 265	1	Terminado	Emil Gunnarsson
+	7960	[Unplanned]: MicroMAX: mono pid for optical hutch	Sprint 265	2	Terminado	Áureo Freitas
+	7961	Eng Prog: Neg-coating 2: update PLC stack and user interfaces	Sprint 265	3	Terminado	Áureo Freitas
				64		

Conclusion

- Project Handover to Operations
- Formal handover process still to be defined
- Using Technology Readiness Levels (TRL) as a potential framework for transition

- **Maintenance Process**
- Opportunity for improvement in:
 - Validation scheduling
 - ► Planning and resource coordination
 - Follow-up and accountability

- Operations Classification & Tracking
 Need to categorize operational activities to better
 understand resource usage
 Important to distinguish between:
- Unplanned work
- Work caused by poor planning
- **Upcoming Project Challenges**

SXL (Soft X-ray free electron laser)

MAX 4U – next major expansion at R3

TomoWise – Full-field tomography beamline

PLC on OPCUA – improve communication bandwith for timestamp resolution

