MAX IV - Control System Operational Support

Agenda

- Introduction
- Problem
- Organization
- Workflow
- Follow-up
- Report
- Conclusion

Introduction: Why operational support is critical for Control Systems?

The glue of the Synchrotron facility: Control System

- Every subsystem from beam diagnostics to vacuum and RF relies on robust control.
- Control Group ensures system integration, device communication, interconnection and data acquisition.

S Complexity & Interdependence

- A synchrotron consists of hundreds of interconnected components.
- Operational support maintains synchronization, automation, interconnection and stability across these systems.

Why Operational Support?

- Reliability is non-negotiable for experiments and beam delivery.
- Enable rapid troubleshooting, tuning, and reconfiguration.
- Reduce downtime and increases user beamtime availability.

Without Support?

- Failures in controls may ripple across the entire machine and beamlines:
 - ➤ Beam instability
 - ➤ Data loss
 - ➤ Delayed experiments

Problem

- **L** From Day One (2016-2022):
- Only one person carried the support phone during weekdays.
- **Primitive rotation**, no formal structure → inconsistent and stressful.
- Clients experienced delays, frustration, and unclear expectations.
- Support Coverage Gaps:
- Weekdays (08:00–17:00): Daytime support for all former KITS groups:
 Controls, Infrastructure, Electronics, Detectors and Scientific Data & Infrastructure.
- One on-call person during off-hours:
 - Weekdays: 17:00-23:00
 - Weekends: 08:00-20:00
- Same person handled everything, regardless of domain.
- Single point of failure.

Facility Growth Outpaced the Model:

- As the facility scaled, the **lack of structure became a bottleneck**.
- Reactive support → led to operational risks and inefficiencies.
- Frustration from clients and users

Need for Change:

- Inspired by DOC (Data department Operation Centre) at European XFEL.
- Vision: Create KITOS Controls & IT Operational Support:
 A structured, sustainable, and domain-aware support framework.

Organization – KITOS: 2022-present

Collaborative Taskforce Formation

- Joint effort across all major groups:
 Software, Electronics, Infrastructure, Detectors
 & Scientific Data
- Goal: Develop a sustainable, shared operational support structure (KITOS)

Taskforce Coordinator – Unofficial role

- Responsibilities:
 - Organize meetings
 - Structure and documentation
 - Schedule coordination and follow-ups
 - Serve as central point of contact

Taskforce Members

- 1–2 representatives from each group
- Support the coordinator and help implement KITOS duties
- Serve as weekly KITOS shift coordinators on a rotation basis

Group-Wide Participation

- All members of each group contribute to daytime KITOS shifts (08:00–17:00)
- Promotes shared responsibility, knowledge exchange, and team resilience
- ~2 shifts per year

Workflow

- Shift Structure
- Daytime Crew (Weekdays 08:00–20:00)
- 2 people per shift, randomly selected from a shared pool (all group members)
- Shift members are exempt from regular duties during this time
- Focused solely on operational support and incident response
- On-Call Crew
- One person per group covers:
 - Weekdays: 17:00–23:00
 - Weekends: 08:00-20:00
- Provides domain-specific support during off-hours
- Certain groups may not cover all weeks but one per month
- Escalation Pathway (Daytime)
 - → Expert support (in-groups)
 - → Shift coordinator
 - → Group manager
 - → Technical Division Director

Start of Shift

- Review KITOS documentation & support logs
- Check accelerator status and operator messages
- Review **support tickets** and handle as per guidelines

During Shift

- Monitor system health (CPU load, network, temps, etc.)
- Investigate and proactively resolve anomalies
- Work on service development tasks
- Engage in **peer learning** and **knowledge sharing**

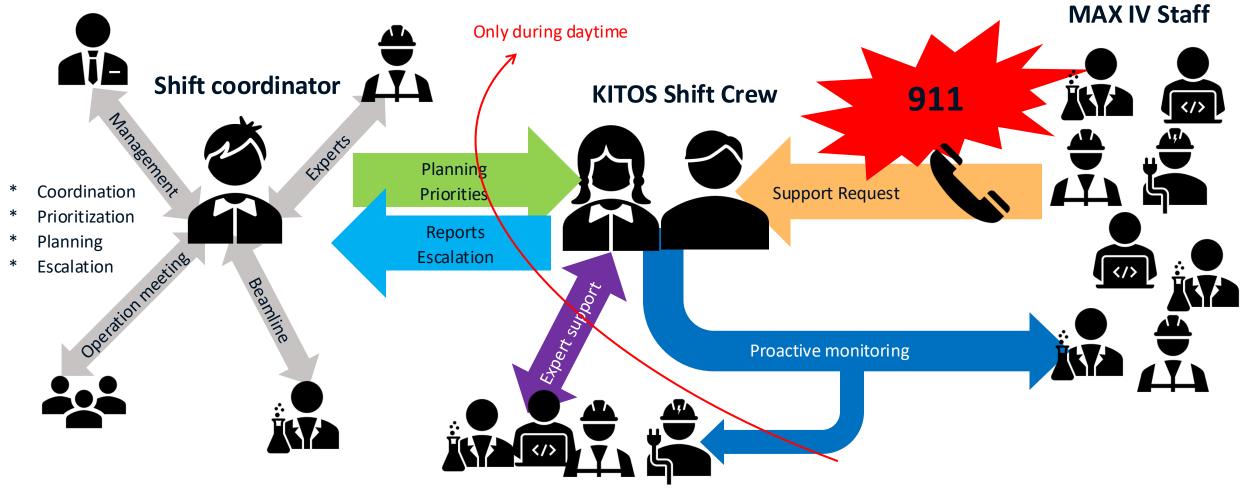
End of Shift

- Assess unresolved issues; escalate urgent problems
- Brief on-call crew about any ongoing or critical issues

Role of the Shift Coordinator

- Schedule and oversee shift assignments
- Manage login/logout for the shared support phone
- Arrange replacements for absences
- Provide prioritization and expert guidance to shift crew
- Lead Monday morning handover meetings
- Represent KITOS in Beamline Operations (BLOPS) meetings

Weekly Handover Process


Every Monday at 09:00

Outgoing crew briefs the incoming team on:

- Active tickets/issues
- Ongoing investigations
- Critical or upcoming interventions

Workflow - Schema

Software, Electronics, Infrastructure and Detectors and Data Acquisition Members

Workflow – Example of shift scheduling

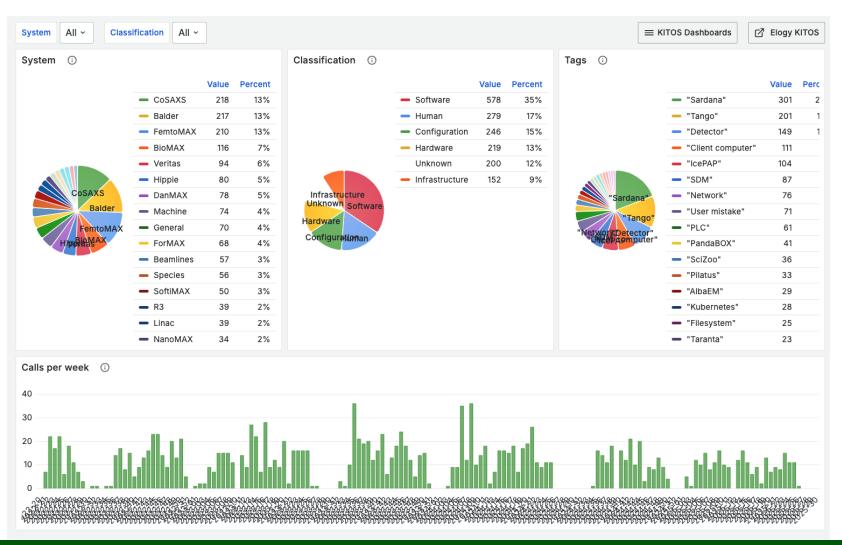
2025

Week	Daytime	Evening/Weekend Software	Evening/Weekend Electronics	Evening/Weekend SciSWDet	Evening/Weekend Infra	Coordinator
01 ¹	-	Mirjam Lindberg	Peter Sjöblom	-	-	-
02 ²	-	Dmitry Egorov	-	-	Jonas Rahmberg	-
03 ³	-	Carla Takahashi	-	-	-	-
04 ⁴	Julio Lidón-Simón, Anton Joubert, Zdenek Matej	Anton Joubert	-	-	-	Dmitrii Ermakov
05	Meghdad Yazdi, Thomas Eriksson	Vanessa Silva	Julio Lidón-Simón	Stuart Ansell	-	Dmitrii Ermakov
06	Dmitry Egorov, Stuart Ansell	Benjamin Bertrand	-	-	Jonas Rahmberg	Dmitrii Ermakov
07	Vanessa Silva, Aleko Lilius	Henrique Silva	-	-	-	Dmitrii Ermakov
08	Carla Takahashi, Mirjam Lindberg	Lin Zhu	-	-	-	Johan Forsberg
09	Anton Joubert, Henrique Silva	Dmitry Egorov	Marcelo Alcocer	_	-	Johan Forsberg
10	Marcelo Alcocer, Oliver Grimm	Áureo Freitas	-	-	Jonas Rahmberg	Johan Forsberg
11	Benjamin Bertrand, Shoresh Soltani	Carla Takahashi	-	-	-	Johan Forsberg

Follow-up - Entries


```
Files created today:
   [species-user@b-v-species-ec-4]/% ll /data/visitors/species/20241608/2025061808/raw/
   -rw-r--r-- 1 species-service 20241608-group 115960 Jun 18 08:35 scan-19647.h5
   -rw-r--r-- 1 species-service 20241608-group 115960 Jun 18 08:44 scan-19648.h5
   -rw-r--r- 1 species-service 20241608-group 115960 Jun 18 08:46 scan-19649.h5
   -rw-r--r-- 1 species-service 20241608-group 115960 Jun 18 08:55 scan-19650.h5
   -rw-r--r-- 1 species-service 20241608-group 45392 Jun 18 08:58 scan-19651.h5
   -rw-r--- 1 species-service 20241608-group 115960 Jun 18 08:59 scan-19652.h5
   -rw-r--r- 1 species-service 20241608-group 292684 Jun 18 09:12 startup-2025-06-18.h5
The new recorder was added as part of the Monday deployment: https://gitlab.maxiv.lu.se/kits-maxiv/ansible-galaxy/cfg-maxiv-
ansible/-/merge requests/7312
Now Sardana has two hdf5 recorders to choose from, and it ended up choosing the new one. Using the environment variable, we can force it
Note: The recorder was added for Prodigy scans, so those won't work as expected. @hensil will have to fix this. E.g., set the recorder based on
the measurement group using a pre-scan hook. Similar to what PEAK does.
-- Follow-up (hensil): Fix implemented on https://gitlab.maxiv.lu.se/kits-maxiv/sardana-prodigy/-/merge_reguests/10
Resolution
Set Sardana environment variable from Spock; senv ScanRecorder NXscanH5 FileRecorder
Avoidance of recurrence: implement an automatic change via a hook. @hensil has been informed.
```

- Log book develpoed in house where all calls are logged: <u>Elogy</u>
- Keys for: Status, System, Caller, Tags and Classification
- Composed by:
 - Title with timestamp describing problem
 - Description:
 - Technical details
 - Effect on Operations
 - Last seen working
 - Investigation: To describe all steps taken to identify the problem
 - Resolution:
 - Describe resolution proceedure
 - How to avoid this happen in future


Follow-up: Metrics

By implementing a **standard tagging system** in each support entry, we enable **Grafana dashboards** to visualize key operational metrics.

These metrics can be **filtered and correlated** by system, classification, tags, time range, and more.

This structured data allows us to:

- Identify and prioritize systems needing improvement
- Allocate resources based on real support load
- Detect anomalies and recurring patterns
- Correlate issues with user run activities
- Generate actionable reports
- Track system maturity and monitor evolution over time

Follow-up

Review & Handover

- All support entries are reviewed during the weekly handover meeting
- Each item is expected to be either:
 - Resolved, or
 - Assigned a **follow-up path** for further action

Group-Level Follow-Ups

- Follow-ups may be handled by individual groups
 - For example: tasks added to group backlogs for future sprints, planning meeting
- Ensures continuity and accountability across technical domains

Post-User Run Reviews (System-Wide)

- The KITOS taskforce now conducts system-wide evaluations after each user run
 - Identify **recurring calls/issues** linked to specific beamlines
 - Collaborate with beamline staff and system contacts
 - Build a **backlog of improvements** to enhance system stability for future runs

Collaboration with Floor Coordinators

- **Floor Coordinators** support users during 24/7 shifts often covering KITOS-like issues during off-hours
- A joint **post–user run review** is being planned with them:
 - Gather insights from their experience
 - Identify documentation gaps
 - Feed findings back into system and process improvements

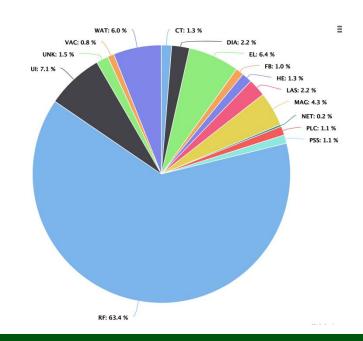
Report

1. Direct Feedback to Requestors

- KITOS crew follows up with the original caller/requestor to report on:
 - Issue resolution
 - Troubleshooting steps taken
 - Any next actions or escalation
- Ensures transparency and closes the support loop.

2. Weekly Global Report (BLOPS Meeting)

- Shift Coordinator presents a weekly summary at the Beamline Operations (BLOPS) meeting
 - Audience includes group representatives, accelerator staff, beamline staff, and directors
 - Covers general trends, significant issues, and any critical incidents
 - Opportunity to raise cross-group concerns and systemwide insights


Machine

3. Accelerator Operation Reporting

- Only beam dump events and major instabilities are reported in this forum
 - Each event is **tracked**, **discussed**, and **analysed**
 - Purpose: prevent recurrence and improve machine stability
- This reporting is done by group representatives, not the KITOS coordinator

Planned delivery (h)	total downtime (h)	uptime (%)	MTTR (h)	MTBF (h)
2808	33.05	98.82	1.84	156.00
2808	72.12	97.43	2.58	100.29
2520	78.28	96.89	0.28	9.03

R3 CT ~ 0.5% R1 CT ~ 0% SPF CT ~ 2.6% TOTAL CT ~ 1.3%

Conclusion

Why KITOS Exists

- As systems grow, reliable, coordinated operational support becomes essential
- KITOS provides a centralized, structured model to address issues efficiently and sustainably

Mow KITOS Works

- Cross-group collaboration and rotation-based shifts ensure wide knowledge coverage
- Clear workflow, defined roles, and escalation paths support operational continuity
- Standardized tagging and dashboards help analyse trends and prioritize improvements

Beyond Reactive Support

- KITOS enables **proactive monitoring**, **system evaluations**, and **post–user run reviews**
- Feedback from **floor coordinators** and **beamline staff** feeds into continuous system improvement
- Integrated reporting at both **team** and **facility-wide** levels fosters transparency and accountability

🧭 Outcome

- KITOS enhances system stability, improves user experience, and enables data-driven decisions
- It is a critical step toward a mature, responsive, and resilient operations framework

