Full-field imaging at DanMAX

Yimeng Li | Software team

- A materials science beamline
- Operates in hard X-ray range 15-35 kev
- Three endstations: full-field imaging, versatile powder diffraction, and high-resolution powder diffraction.

Background

Full field tomography experiment at DanMAX has been designed to offer maximum flexibility across a wide spectrum of experimental types and modalities, accommodating a diverse range of samples and sample environments.

Rotary stage: Controlled by an ACS system, the rotary stage serves a dual purpose: it not only supports the XY alignment stages mounted above it but also provides essential electrical connections for user-defined sample environments, including small motors, trigger signals, and high-voltage supplies.

Measurement time: A single-volume tomographic scan (~1 mm3) can be recorded in as little as 1 second. Generally, acquisition times for single volumes range between 10 and 300 seconds, depending on exposure, dynamic range, and the objective used.

Detector Calibration:

0

- Detectors:
 - a. Hamamatsu Orca
 - b. Andor Zyla 5.5

- Dark-field correction: Record background signal with X-ray off.
- Flat-field correction: Record reference images without the sample.

File format

HDF5::DXchange

Control setup at DanMAX

Data acquisition

- Sardana based scan schema
- Separate tomo configurator tango device to store the detector calibration data
- PandaBOX integrated hardware trigger synchronization

Syntax:

tomoscan <collect_dark> <collect_white> <nb_points_flat> <tomo_scan_type> <rotational_motor> <start_pos> <end_pos> <nb_points_tomo> <integ_time> <tomo_detector> <white_pos> <latency_time>

tomoscan macro runs scanning for tomography experiment. It consists of a darkscan, a whitescan

and a tomo scan which supports both step scan and continuous scan.

Parameters:

collect_dark: (Boolean) collect dark field scan if it is true collect_white: (Boolean) collect white field scan if it is true nb_points_flat: (Integer) number of points for the flat field scan

tomo_scan_type: (String) the type of scan used for the tomography

rotational_motor : (Moveable) moveable for tomography scan

start_pos : (Float) scan start position end_pos : (Float) scan end position

nb points tomo: (Integer) number of points for the tomo scan

integ_time: (Float) integration time

tomo_detector: (String) the detector used for tomo scan

white_pos: (String) the saved position to move a predefined motor for flat field scan

latency time: (Float) latency time for the tomo scan

TomoScan GUI

- Calculate the tomo scan parameters
- Set scan ranges from 0 to 360 and an even number of projections

Tomo mapper GUI

Set up for coarse overview scan and projections stitching

Live reconstruction pipeline

Reconstructor

Center of rotation Phase retrieval Reconstruction

