Fly scans at HEPS and BSRF

Ai-Yu Zhou
Xiao-Bao Deng
Zong-Yang Yue

Yu Liu
Peng-Cheng Li

Beamline control

} Experiment software

Technical discussions between HEPS and MAX-IV

2025.08

1/15

Introduction: background information

» Beamline control (left image): EPICS-based control of individual devices.

» Experiment software (middle image): Bluesky-based interlocked action between devices.

> Before deployment at HEPS, a lot of our work has been tested at BSRF (upper right).

2/15

Introduction: a brief timeline of fly scans at HEPS and BSRF

» 2019: first PandABox purchased by beamline control for early research, because of the
need to speed up XRF scans at 4W1B of BSRF.

» 2020-2021: after investigation on candidates, comprehensive research on Bluesky was
conducted; experiment software group formed, development of Mamba began.

> 2022-2023: our own framework for PandABox-Bluesky fly scans was developed and
applied in a few simple cases at BSRF.

» 2024: composite scans and PandABox-based stationary acquisition schemes at HEPS.

» From 2024.09: high-speed fly scans based on trajectory moving, already producing
interesting intermediary results now.

» On our horizon: undulator-monochromator fly scans, adaptive fly scans, fly scans that can
be paused and resumed, ...

3/15

Architecture of fly scans: our early issues with pymalcolm

» To implement fly scans with Mamba o CEFARA IR o
(D0I:10.1107/81600577522002697,
codeberg:CasperVector/mamba-ose),
our Bluesky-based software ecosystem,
we researched pymalcolm (results
shown in the images), PandABox’s
official middleware.

» We attempted to reuse pymalcolm's
code, but found it over-complex. By
understanding the role of PandABox,
we would be able to identify what we
needed to extract from pymalcolm.

4/15

Architecture of fly scans: “P(osition) & A(cquisition)”

» Based on prior experience, we came up with the “P & A" architecture, inspired by the full name
of PandABox, “position and acquisition control system”. Mechanical factors also affect motion
control. Work on detectors and data processing can be offloaded to other people. Also present is
online feedback, a basis for adaptive fly scans.

» We extracted pandablocksclient.py from pymalcolm; an ophyd encapsulation of it is used
to control PandABox, while ADPandABlocks is used to do the data readout. In our preliminary
research for high-speed fly scans, we found ADPandABIlocks to have a framerate upper-bound of
a few kHz. This was a major motivation for our caproto-based Python IOC framework QueuelOC
(arXiv:2411.01258, arXiv:2411.01278, codeberg:CasperVector/queue_iocs).

ophyd (D.panda) pymalcolm/malcolmjs

ophyd (D.adp) |

Movable devices i

(usually motors) Mechanics |
ACH

Position signals I

Sequencer device | : :
(eg. PandABox) -s Online feedback

Trigger signals

Triggered devices -
(mainly detectors) DD FIEECEEr)

5/15

Architecture of fly scans: from ADPandABlocks to QueuelOC

» Our Python 10C gdet_panda is able

(a) (b) >>> mono_phis("rtheta2", "hr_symm",

to saturate the 45 M B/S bandwidth of PP - B :‘;sz;ozvﬁzg1(;25:;192:;351%Zézg;g?se,
PandABox's TCP server using its gigabit P S e
ethernet and the XML. FRAMED SCALED w2 0> "theta2': 77.50639048852325, 'phi2': 77.50646762119422}

format: a 980 kHz framerate when each
frame is composed of 6 double fields.

» This is about the same performance as
Diamond’s PandABlocks-ioc, but our
code is shorter and more reusable.
QueuelOCs have also been written to
support devices traditionally done with
EPICS StreamDevice and seq; our
monochromator 10Cs greatly simplify
complex state machines from their
optics-based counterparts (lower image).

6/15

Fly scans at BSRF: time-based triggering with Bluesky

» With our ophyd encapsulation, we can fully control PandABox. Based on it is our first Bluesky
plan for regular grid fly scans, f1y_grid() (D0I:10.1007/s41605-023-00416-x). It and
fly_dgrid() are usable with a wide range of motors with encoders.

» Using time-based triggering, £1y_grid() is also a simplest fly-scan plan to implement, only
needing loops of at most 4 sequencer instructions. Time-based triggering produce uneven scan
points with unstable motor speeds, but Voronoi diagrams can be considered.

D.panda call:

> D.panda.seql.table.max_length.get()

< 16384

Underlying pandablocksclient.py call:

> client.get_field("SEQL", "TABLE.MAX_LENGTH")
< "16384"

PandABlocks-server’s on-wire communication:

> SEQL.TABLE.MAX_LENGTH?

< 0K =16384

D.panda call:

> D.panda.ttlout10.val.put("TTLIN1.VAL")

< None (Misuse raises exceplions.)

Underlying pandablocksclient.py call:

> client.set_field("TTLOUT10", "VAL", "TTLIN1.VAL")
< Nome (Misuse raises exceptions.)

PandA Blocks-server’s on-wire communication:

> TTLOUT10.VAL=TTLIN1.VAL

< OK (Misuse results in other replies.)

3

EE

s

2

°

T: 4
@

7/15

Fly scans at BSRF: double SEQ and position-based triggering

> Position-based triggering may need many sequencer instructions, but one PandABox SEQ block
can only contain 4096 instructions. We implemented automatic switching between the 2 SEQ
blocks in a PandABox, now allowing a 16-20 kHz instruction rate. After one block runs out of
instructions, new instructions are filled in while the other block starts running.

» Based on this, we implemented the plan £1y_dgrid() that supports position-based triggering.
Our PMAC-based plans are also based on this double-SEQ scheme, as will be our planned
adaptive fly scans, because it can support infinite streams with online feedback.

8/15

Fly scans at BSRF: scan fragmentation, MambaPlanner and Bubo

>

>

Devices like Xspress3 have limits on the number of frames that can be acquired one time, and
our fly-scan plans can split scans into fragments within the limits (set by the parameter div).

Parameters like div make the raw command for a fly scan quite verbose. So MambaPlanner was
developed to reduce duplication, abstract details and do checks. Also developed was Bubo, a
mechanism for software-based fly-scans (DOI:10.1080/08940886.2023.2277639).

U.planner = ImagePlanner (U)
U.planner.extend(PandaPlanner(
[D.pandal, divs = {D.xsp3: 12216}, h5_tols = {D.xsp3: 0},
enc_tols = {m: 25 for m in M.values()},
vbas_ratios = {m: 2.0 for m in M.values()},
configs = {D.xsp3: {"cam.trigger_mode": 3}}
)
U.planner.extend (BuboPlanner (D.bubo,
divs = {D.xsp3: 12216}, h5_tols = {D.xsp3: 0}))
P = U.planner.make_plans()

#RE(fly_dgrid([D.xsp3], M.m2, -1, 1, 3, M.ml, -4, 4, 5, duty = 0.5,

period = 0.5, div = 12216), cb_gen(...), md = U.mdg.read_advance())
P.fly_dgrid([D.xsp3], M.m2, -1, 1, 3, M.m1, -4, 4, 5, duty = 0.5, period = 0.5)
P.sfly_grid([D.xsp3], M.m2, -1, 1, 3, M.m1, -4, 4, 5, pad = 2)

9/15

Fly scans at HEPS: composite fly scans based on f1y dgrid()

» Based on the backend mechanisms above, we developed Mamba GUIs for simple fly scans at
BSRF (4W1B example shown in the image), and produced satisfactory results. Based on all of
these, we implemented plans for composite scans.

» Examples include 1D, 2D energy and 3D mosaic tomography scans at imaging beamlines of
HEPS; corresponding GUIs are also in the process of development or deployment. Other fly-scan
requirements based on fly_dgrid() have also been implemented, eg. 3D XRD fly scans.

10/15

Fly scans at HEPS: position feedbacks and stationary acquisition

» Another major type of complication arises from the diversity of position feedbacks:

» BISS encoders etc require more delicate configuration than quadrature encoders.

» Absolute encoders and ADC feedbacks have no hardware zero points.

> Laser interferometers & ADC feedbacks have scales & offsets different from the motor 10Cs.

» The Huber controller will lose connection to its BISS encoders when configured wirings
between the corresponding “PandA blocks” are reset.

» To fully exploit its potential, we also use PandABox to do other tasks:

» Beamlines like BB need multi-framed stationary acquisition from detectors, coupled with
automatic hardware-timed opening and closing of shutters to minimise radiation damage.

> The XPCS experiments at B4 are similar, just wrapping the above inside step scans.

> Mamba GUIs have been developed for both above.

11/15

Advanced fly scans: scans based on trajectory moving of motors

» We are actively developing high-speed fly scans based on trajectory moving with eg. PMAC
at B4 and B2. We have developed PMAC-based fly-scan plans for archimedean spirals, regular
2D grids, and a plan for pseudo-step scans. In pseudo-step scans, the motion and triggers are
controlled by PMAC PVTs and PandABox sequencer tables, allowing for high-speed acquisition.

> The Bluesky/Mamba layer has passed early tests, but we are yet to test how the entire hardware-
software system behaves in real high-speed conditions with large numbers of scan points.

PANDALFMC_INVAL3
PANDALFMC_INVALS

12/15

Obvious distortion can be seen on the trajectories
measured with laser interferometers; this is a most
important issue we need to resolve.

For now we rely on ADC feedbacks, but another
issue is ADC noise: the peak-peak noise of one axis
at B4 can be up to 140 nm, while the RMS noise is
~ 5nm (both converted to the engineering unit).

While results on the previous page shows the noise
does not seem to severely affect our basic triggering
logic, the B4 beamline wants better ADCs with no
more than ~ 1 nm noise.

We wish to be able to combine the software layer
above with hardware and control bases comparable
with APS’ velociprobe (DOI:10.1063/1.5103173).

Advanced fly scans: closed-loop feedback and ADC noise issue

—— PANDALFMC_INVALL Mean: [-2.08237, 2.59287]
—— PANDALFMC_IN.VAL2 Mean: [4.50923, 4 51187]
—— PANDALFMC_IN.VAL3 Mean: [-2.32828, 1.96681]
—— PANDAINENC3.VAL Mean: [-5741.73, -1710.54]

—— PANDALFMC_IN.VALL Min: [-0.0428559, 0.0365213]
—— PANDALFMC_IN.VAL1 Max: [0.0428559, 0.0365213]

—— PANDALFMC_IN.VALL Mean: [-0.0428559, 0.0365213]

O 2500 5000 7500 10000 12500 15000 17500 20000

13/15

Advanced fly scans: subjects on our horizon

» Currently under research — undulator-monochromator fly scans: we are following eg. the
HD-DCM at Sirius (DOI:10.1107/S1600577522010724).

» Currently under research — adaptive fly scans: we are following eg. the boundary-guided
ptychography at APS (DOI:10.1107/81600577523009657); Diamond's PMAC I0C
(github:DiamondLightSource/pmac) lacks full support for ring buffers, and we plan
to add this support in our refactored I0C (codeberg: CasperVector/motorPmac).

» Future subject — fly scans that can be paused and resumed: this may require deep
changes inside Bluesky's RunEngine.

» In conclusion: plenty of fun is waiting for us!

14/15

Thanks!

e,
p(Y D) = (0 B)(Y)
N3
7 Y7

15/15

