

Facility Overview

1.5 GeV **Electron gun** ring 250 m Full-energy injector to the rings

SPF:

Linac:

Bunch length 100 fs

Future FEL?

1.5 GeV ring:

- DBA lattice
- Emittance 6 nm rad
- Soft X-ray users

3 GeV ring:

- MBA lattice
- Emittance ~0.3 nm rad (bare)
- Hard X-ray users

Short pulse facility

3 GeV

ring

Facility Overview

Linac

• 39 warm s-band linac

Linac

Photocathode gun
gun

BC1 @ 260 MeV

Extraction

Extraction 3 GeV

Courtesy of Sara Thorin

1.5 GeV

Injection Schemes

	Ring injection	SPF injection
Electron gun	Thermionic	Photocathode
Energy	1.5 GeV/ 3 GeV	3 GeV
Rep. rate	10 Hz	100 Hz
Charge	0.6-1 nC/shot	100 pC
Norm. emittance	10 mm mrad	1 mm mrad
Energy spread	<0.2%	<0.4%

Time Structure for Ring Injection

- Acceleration on-crest to avoid compression.
- Rep. rate 10 Hz
- 1 shot = 100 ns bunch train.
- Chopper to modify 3 GHz time structure to 100 MHz and create 100 ns shot. Chopper properties can be modified to achieve other time structures, e.g. single-bunch injection.
- Top-up operation, ~2 s/inj., inj. every 6 min./ring (1% current loss).

MAX IV Storage Rings

1.5 GeV ring

Horizontal emittance	6 nm rad	
Circumference	96 m	
Current	500 mA	
Charge per bunch	5 nC	
Max no of bunches	32	
No of user straights	10	

3 GeV ring

Horizontal emittance	0.3 nm rad		
Circumference	528 m		
Current	500 mA		
Charge per bunch	5 nC		
Max no of bunches	176		
No of user straights	19		

Double-bend achromat

7-bend achromat

- 12 double-bend achromats.
- Dip with defocusing gradient (can be varied with pole-face strips).
- 2 focusing quad families with focusing sext comp & 2 defocusing sext families.

$$\xi_{x0} = -22.981$$

 $\xi_{y0} = -17.141 \rightarrow \xi_{x,y} = +2$

 2 correction sext families to correct chromaticity further.

$$\rightarrow \xi_{x,y} = +1$$

MAX IV 3 GeV Ring Lattice

- 20 7-bend achromats.
- 5 units cells & 2 matching cells.
- Dip with defocusing gradient (can be varied with pole-face strips).
- 3 focusing quad families &
 1 defocusing quad family.
- 3 focusing sext families &2 defocusing sext families.

$$\xi_{x0} = -49.984$$

 $\xi_{y0} = -50.198 \rightarrow \xi_{x,y} = +1$

3 octu families.

Magnet Concept

- Concept: Integrated unit containing several magnet elements:
 - Vibration stability
 - Internal alignment given by machining tolerances
 - Easier installation

Courtesy of Martin Johansson

Ring Magnets and NEG

1.5 GeV ring

- Magnet aperture Ø28-51 mm.
- Steel vacuum chamber.

3 GeV ring

- Magnet aperture Ø25 mm enabled by NEG-coated Cu vacuum chambers.
- One block (2.3-3.4 m) machined out of common iron block.
 Mechanical tolerance: ± 20 μm.

Courtesy of Martin Johansson

Diagnostics

- Some examples of available diagnostics in the ring:
 - BPMs that can be run in turn-by-turn mode.
 - Synchrotron light monitors (enable emittance measurements): 1 at dispersive region + 1 at nondispersive region (possible to measure energy spread).
 - 2 orbit feedback systems (slow and fast).
 - Strip-line pick-up (used for tune measurements).
- We do not yet plan to have:
 - Bunch-by-bunch feedback system.
 - Streak camera.

Installation & Commissioning

- Linac:
 - Ongoing: Commissioning, reached 3 GeV and dump at end.
- 3 GeV ring:
 - Ongoing: Installation of magnets and vacuum chambers
 - Start of commissioning: 23 July 2015
 - Operational: 10 June, 2016
- 1.5 GeV ring:
 - Ongoing: Concrete supports installed
 - Start of commissioning: 18 December, 2015
 - Operational: 17 June, 2016

Inauguration: 21 June, 2016

RF Parameters

1.5 GeV ring

Main RF frequency	99.931 MHz	
Max. overall RF voltage	2 x 280 kV	
HC frequency	3 x 99.931 MHz	
No of HCs	2	
Momentum compaction	3.06e-3	
Natural bunch length (at max. overvoltage)	14.6 mm	
Maximum bunch length	63.8 mm	

3 GeV ring

Main RF frequency	99.931 MHz	
Max. overall RF voltage	6 x 300 MV	
HC frequency	3 x 99.931 MHz	
No of HCs	3	
Momentum compaction	0.306e-3	
Natural bunch length (at max. overvoltage)	8.8 mm	
Maximum bunch length	49.6 mm	

Bunch lengthening ~4 times

Bunch lengthening ~5 times

Harmonic Cavities and Bunch Lengthening

- Rings designed for uniform multi-bunch filling pattern w/o ion-clearing gap.
- HCs to damp instabilites and increase Touschek lifetime by increasing bunch length.
 3 GeV ring: also conserve ultralow emittance at high bunch charge (IBS).
- HCs operate in passive mode → bunch lengthening depends on filling pattern and cavity tuning.

Instability Studies

Threshold currents(mA) in MAX IV 3 GeV ring considering different effects

effect	ξ		eom		+ RW	$Z_{geom} + RW_{5IDs}$
plane	5	HC off	HC on	HC off	HC on	HC on
Longitudinal	-	620	970	2 -	-	-
	0.0	2010	2020	120	140	-
Horizontal	1.0	>2050	17100	150	3500	-
	1.2	5040	21900	-	-	-
	0.0	920	710	40	40	-
Vertical	1.0	2200	10400	-	950	380
*in mA	1.2	3170	15100	50	1250	540

Harmonic cavity is crucial for successful operation!

LER workshop, September 2014

Galina Skripka

Courtesy of Galina Skripka

Touschek Lifetime & IBS

Courtesy of Simon C. Leemann PRST-AB 17, 050705 (2014)

Touschek lifetime

- Bunch lengthening \rightarrow incr. lifetime.
- Lifetime important to avoid interruption of SPF operation.

Emittance blowup

- IBS causes emittance blowup.
- 3 GeV ring: IBS blows up emittance by 45 %. HCs can reduce to 13 %.

Timing Properties

- T_{rev}: Revolution period of a bunch, determined by ring circumference.
- T_{RF}: Time between bunches, determined by RF frequency, depends on filling pattern.
- T_d: Bunch duration, depends on settings of main RF cavities, harmonic cavities, and IBS.

	Rep. rate [T _{rev}]	T _{RF}	T _d
SPF	100 Hz	10 ⁷ ns	0.1 ps
1.5 GeV ring	3.13 MHz [0.32 μs]	10 ns	~50 ps (no HCs) to ~213 ps (with HCs)
3 GeV ring	0.57 MHz [1.76 μs]	10 ns	~30 ps (no HCs) to ~165 ps (with HCs)

Workshop Motivation & Ideas for Future Work

Priority from user input

- Create adequate time structure.
- 2. Decrease bunch length.

Ideas for Machine Development

- Filling patterns with passive HCs
 - Single bunch
 - Hybrid modes
- Resonant pulse picking (PPRE)
- Pseudo single bunch

Workshop Motivation & Ideas for Future Work

Priority from user input

- 1. Create adequate time structure.
- 2. Decrease bunch length.

Ideas for Machine Development

- Filling patterns with passive
 HCs
 - Single bunch
 - Hybrid modes
- Resonant pulse picking (PPRE)
- Pseudo single bunch

What do we need to do to be able to serve both single-bunch and multi-bunch users simultaneously at low-emittance storage rings?

