Filling patterns and timing modes with passive bunch lengthening cavities in APS-U

Michael Borland, Tim Berenc
Accelerator Systems Division

March 25, 2015
Outline

- Comparison of APS now and APS-U plans
- Modeling methods
- Bunch duration, shapes, and lifetime
- Effects of bunch population variation
- Simulation of effects of loss of a bunch
- Effects of ID gap motion
- Hybrid mode and other options
- Conclusion and plans
Hybrid 7BA Lattice Compared to APS Now

<table>
<thead>
<tr>
<th></th>
<th>APS</th>
<th>MBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betatron motion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν_x</td>
<td>36.205</td>
<td>95.125</td>
</tr>
<tr>
<td>ν_y</td>
<td>19.272</td>
<td>36.122</td>
</tr>
<tr>
<td>$\xi_{x,\text{nat}}$</td>
<td>-90.340</td>
<td>-138.580</td>
</tr>
<tr>
<td>$\xi_{y,\text{nat}}$</td>
<td>-43.319</td>
<td>-108.477</td>
</tr>
<tr>
<td>Lattice functions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum β_x</td>
<td>30.2</td>
<td>12.9</td>
</tr>
<tr>
<td>Maximum β_y</td>
<td>27.8</td>
<td>18.9</td>
</tr>
<tr>
<td>Maximum η_x</td>
<td>0.216</td>
<td>0.074</td>
</tr>
<tr>
<td>Average β_x</td>
<td>13.2</td>
<td>4.2</td>
</tr>
<tr>
<td>Average β_y</td>
<td>15.9</td>
<td>7.8</td>
</tr>
<tr>
<td>Average η_x</td>
<td>0.148</td>
<td>0.028</td>
</tr>
<tr>
<td>Radiation-integral-related quantities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam energy</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Natural emittance</td>
<td>2527.5</td>
<td>66.9</td>
</tr>
<tr>
<td>Energy spread</td>
<td>0.095</td>
<td>0.096</td>
</tr>
<tr>
<td>Horizontal damping time</td>
<td>9.7</td>
<td>12.1</td>
</tr>
<tr>
<td>Vertical damping time</td>
<td>9.7</td>
<td>19.5</td>
</tr>
<tr>
<td>Longitudinal damping time</td>
<td>4.8</td>
<td>14.1</td>
</tr>
<tr>
<td>Energy loss per turn</td>
<td>5.34</td>
<td>2.27</td>
</tr>
<tr>
<td>ID Straight Sections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_x</td>
<td>19.5</td>
<td>7.0</td>
</tr>
<tr>
<td>η_x</td>
<td>171.88</td>
<td>1.11</td>
</tr>
<tr>
<td>β_y</td>
<td>2.9</td>
<td>2.4</td>
</tr>
<tr>
<td>$\epsilon_{x,\text{eff}}$</td>
<td>3142.7</td>
<td>67.0</td>
</tr>
<tr>
<td>Miscellaneous parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Momentum compaction</td>
<td>2.84×10^{-4}</td>
<td>5.66×10^{-5}</td>
</tr>
<tr>
<td>Damping partition J_x</td>
<td>1.00</td>
<td>1.61</td>
</tr>
<tr>
<td>Damping partition J_y</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Damping partition J_3</td>
<td>2.00</td>
<td>1.39</td>
</tr>
</tbody>
</table>

H7BA lattice based on L. Farvacque et al., IPAC13, 79.
Present APS fill and operating modes

- 24-bunch uniform, 100 mA
 - 75% of time
 - 6.5 MHz bunch rate
 - 120s top-up

- 324-bunch uniform, 100 mA
 - 15% of time
 - 88 MHz bunch rate
 - 12 hour “fill-on-fill” interval

- Hybrid (camshaft), 100 mA
 - 10% of time
 - One 16 mA bunch
 - 60-s top-up

Diagram courtesy L. Emery, APS.
Planned APS-U fill and operating modes

- Minimum beam current of 200 mA
- Swap-out injection
 - Single bunch swapping only
 - 5-15 s interval
- Two fill patterns being advertised
 - 324-bunch uniform
 - Limit of present kicker technology
 - Desirable for long lifetime and possible flat beam operation
 - 48-bunch uniform
 - Desirable for timing experiments
 - Round beam operation required for lifetime reasons
- Possible hybrid or non-uniform modes under study
- Bunch-lengthening needed to reduce IBS, improve lifetime
 - Passive higher-harmonic cavity (HHC) planned
 - 4th harmonic (of 352 MHz)
- Extensive simulations performed to verify effectiveness, beam stability, practical issues
Modeling methods

- Used parallel **elegant** for tracking
 - Latest release (v27.0) has significantly improved performance for bunched beams
 - Domain decomposition shares bunches across processors for best performance with multi-particle bunches

- To make tracking faster and concentrate on relevant physics
 - ILMATRIX element for the ring itself
 - Can include chromatic and amplitude detuning (not relevant here)
 - Can include first- and second-order momentum compaction
 - SREFFECTS for lumped synchrotron radiation

- Turn-by-turn, bunch-by-bunch\(^1\) diagnostics included as needed
 - Phase space coordinates
 - Beam moments
 - Histograms
 - Beam- and generator-induced voltages, phases in cavities
 - Rf feedback system data

\(^1\): Available in next release.
Collective effects and rf modeling

- **RFMODE**: Beam- and generator-driven rf cavity mode
 - Beam-induced part
 - Uses loss factor plus phasor addition/rotation/damping
 - Implicitly includes the compressive single-turn wake corresponding to the mode
 - Can be turned off if desired
 - Generator-driven part
 - PID feedback seeks to maintain specified net cavity voltage and phase
 - User provides filter coefficients for the controllers
 - Can add other cavity longitudinal and transverse modes if desired (not in present work)

- **ZLONGIT\(^1\)**: Longitudinal short-range impedance
 - Present instance includes
 - Short range wake from rf cavity HOMs but excluding fundamental
 - Geometric impedance of vacuum chamber computed with GdfidL\(^2\) and ECHO2D
 - Resistive wall impedance computed analytically

- Part of **elegant** since 1994, but recently
 - Improved parallel performance for multi-bunch beams
 - Added rf feedback

\(^1\)Data courtesy R. Lindberg, A. Blednykh, and Y.-C. Chae.
\(^2\)www.gdfidl.de
RF Feedback

RF feedback:
- Regulates the RF cavity fields
- Rejects disturbances including beam loading
- Changes the impedance that the beam sees
- Note: in Bunch Lengthening System, main RF contributes to Robinson damping while the harmonic RF cavity contributes to growth

Example: Direct RF Feedback
- Simple Proportional Gain
 \[\text{Controller} = \frac{\beta}{R} \]
 \(\beta \) = Loop Gain at resonance
- R and Q are reduced by \((1 + \text{Loop Gain}) \)
- R/Q stays the same
Longitudinal phase space without HHC

- Results similar with 10^4-10^6 simulation particles/bunch
- Microwave instability threshold is at ~0.5 mA/bunch
 - In APS, threshold is ~7 mA/bunch
- Increased energy spread has a small impact on brightness
Scan of HHC detuning

- As expected, bunch lengthens as HHC cavity is tuned toward resonance
- “Beneficial” effect of MWI visible for 48-bunch mode
- As bunch lengthens with decreased detuning, MWI is suppressed and energy spread drops
- Expected optimum bunch length from theory (without impedance) is 50 ps with ~16.5 kHz detuning
 - 324-bunch results agree with this expectation
 - Seems we can go beyond that...
Longitudinal density averaged over 2000 turns (48B)

- 10.00kHz
- 10.50kHz
- 11.00kHz
- 11.50kHz
- 12.00kHz
- 12.50kHz
- 13.00kHz
- 13.50kHz
- 14.00kHz
- 14.50kHz
- 15.00kHz
- 15.50kHz
- 16.00kHz
- 16.50kHz
- 17.00kHz
- 17.50kHz
Longitudinal density is noisy, but rms is stable (48B)

- Results on previous slide average out the effect of MWI
- Turn-by-turn variation seems mostly MWI-driven
 - Present with cavity detuned by $+136\text{kHz} \ (f_{\text{rev}}/2)$ as well
- Not related to rf feedback
- How much do users care about this?
Touschek lifetime analysis

- Touschek lifetime is main reason for introducing HHC
- Normally, one just uses gaussian bunch duration
- Using tracking results improves fidelity of calculations
 - Tracking results give bunch distribution turn-by-turn
 - Slice analysis of bunch on each pass gives current density and slice energy spread
 - Slice energy spread includes MWI
 - Program `touschekLifetime` allows slice-based Touschek lifetime calculation
- Also included IBS effect on emittance and energy spread
 - Computations used `ibsEmittance`
- In addition, need local momentum acceptance
 - Used 100 error ensembles with lattice correction as input to tracking
- Computations provide a Touschek lifetime value for each error ensemble, averaged over many bunch samples
- Method not fully self-consistent, but allows combining effects of intrabeam scattering, HHC, and microwave instability

1: A. Xiao and M. Borland, PRSTAB 13 074201 (2010); and A. Xiao, to be published.
4: V. Sajaev, to be published.
Touschek Lifetime Improvements due to HHC

- In both cases, have 200 mA, $Q_L = 600k$, $\kappa \approx 1$

- For 48 bunches, get factor of ~2 for 13.5 kHz detuning
 - Bunch is already significantly lengthened by the ring impedance
 - Do not reach the desired 7.5 h value
 - Has implications for shielding, TBD

- For 324 bunches, get factor of ~3 for 13.5 kHz detuning
 - Total lifetime (including gas scattering) expected to meet goal for round beams
 - Flat beams (2x higher brightness) more challenging

Symbols show 10th (lower) and 50th (upper) percentile points in lifetime distributions.
Effect of bunch population variation

- Bunches will be swapped out when they fall to 90% of initial charge
- Expect to have randomly-ordered (in time) bunches with uniform distribution of charge between 105% and 95% of the average value
- Simulated 10 random 48-bunch fills of this type
- Modest variation among bunches within a fill and over time
Effect of lost bunch (48 bunches, minus 1)

- Swap-out involves kicking out one bunch and immediately injecting replacement
 - May fail sometimes to inject the replacement
- Simulated kicking out of last bunch in 48-bunch fill, then return to equilibrium
 - No particle loss observed even with ±2% momentum acceptance
- Real part of beam-induced field in main cavity has ~160-230 kV sawtooth
 - Forces bunches to shift phase
 - Changes effect of HHC
The effect of lost bunch (48 bunches, minus 1)

- Variation in the bunch centroid is a significant fraction of the bunch length
 - Is this a problem for users?
- ~7 degree phase shift on main rf system
 - May want to adjust injector phase to hit the optimum point in the bucket
- Bunch length variation is under 10%, presumably tolerable
- Could provide gate to users to indicate when a bunch is missing
Effect of variation in energy loss per turn

- As ID gaps are varied, the energy loss per turn varies
 - Could vary by a significant fraction of the 2.27 MeV/turn nominal loss
 - Presently, without pre-conditioning APS rf systems trip when closing all ID gaps rapidly

- Feedback will maintain cavity voltage and phase relative to the source, but
 - Beam will move to a different rf phase
 - Incoming bunches may suffer losses from energy oscillations due to phase offsets
 - Bunch duration will change

- Simulated unrealistically rapid variation of energy loss per turn by 0.6 MeV
 - Took 10 equal steps at 10k turn intervals
 - Ramped loss between levels over 1000 turns
 - Included effect on damping times and energy spread
 - Kept (slow) tuners for main, HHC fixed
Effect of variation in energy loss per turn

- Increased energy loss moves beam higher on the main rf waveform
- Reduced slope of main rf means longer bunches
 - Good news for beam lifetime
- For 13.5 kHz bunches begin to take double-humped appearance
- Shifting phase complicates injection
 - Booster may need to track SR bucket
Hybrid mode

- Looked at two possible hybrid or camshaft modes with 4.25 mA/bunch
 - Mode 1: 47 bunches at 12 bucket spacing with ±1.05 μs gap from single bunch
 - Mode 2: 47 bunches at 18 bucket spacing with ±0.66 μs gap from single bunch

- As expected, significant non-uniformity in bunch properties
 - Do not achieve >67 ps bunch duration seen in uniform 48-bunch mode
 - Already-difficult lifetime situation made significantly worse

- Results shown have detuning of 15.5 kHz
 - Variations are slightly worse for 13.5 kHz
Hybrid mode

- Main cavity voltage shows a significant modulation
- Present rf feedback system is not fast enough to counteract this
 - Response time is about 20 ms
- Studying a faster system that should better compensate
RF Feedback: Other Types of Feedback

- Polar (Amplitude / Phase) or Cartesian (in-phase / quadrature): can be narrowband or wideband
- Comb Filters: reduce impedance & beam-loading at revolution harmonics & synchrotron sidebands
- Feed-Forward: feed wall-current monitor to generator to cancel the beam-current directly

Example of Transient Beam-Loading Compensation for Hybrid Fill
(can be achieved with combination of above)
Another possibility: 24 doublets

- Could fill 24 pairs of buckets with uniform separation between pairs
 - Pair forms a “super-bunch” 2.9 ns in duration
 - 151 ns gap between pairs
- This actually works pretty well
 - 13.5kHz: 70-76 ps rms bunch duration
 - 15.5kHz: 63-67 ps rms bunch duration
X-ray Pulsed Brightness Compared to APS Today

- Assumptions:
 - APS: existing insertion devices and front ends; 24-bunch, 100 mA mode
 - APS-U: 4.8-m HPM and 3.7-m SCUs, high-heat-load front ends, 200 mA

- Increases of 40-80 fold for hard x-rays

Pulsed brightness is $\frac{p}{\text{pulse/mm}^2/\text{mrad}^2/0.1\%\text{BW}}$
Conclusions

- APS presently runs in timing modes about 85% of the time
- APS MBA upgrade seeks to preserve timing capabilities
 - 48-bunch, 200 mA mode
 - Pulsed brightness shows a significant increase
 - Exploring hybrid modes, other possibilities
- The necessity for a bunch-lengthening cavity complicates matters
- Extensive simulations show little issue with
 - 48-uniform, 324-uniform, and 2x24 fill modes
 - Accidentally kicking out a bunch
 - ~10% variation in bunch-to-bunch charge
 - Rapid ID gap variation
- Beam-phase detectors seem advisable to keep booster and ring synchronized
- On-going work includes
 - Simulation of filling from zero
 - Use of faster rf feedback with goal of improving results for hybrid mode
 - Modeling of multi-bunch instabilities with additional cavity HOMs
 - Add transverse impedance and verify single bunch stability limits
Acknowledgments

- Impedance model: R. Lindberg, A. Blednykh (BNL), Y.-C. Chae
- Error enembles for lattice evaluation: V. Sajaev
- Computing: Argonne Laboratory Computing Resources Center (LCRC)