SANS sample environments at NIST past, present, and future: From lessons learned to new opportunities

Sample Environment: what is it?

- Apply an environment "field" to the sample (B,T,E,P, σ , γ etc)
- Make simultaneous measurement of various properties
 - Is it necessary? There exists two camps on this issue still
- RELATED new techniques closely coupled to environment:
 - TISANE (e.g. high frequency oscillating fields)
 - Time Resolved (e.g. stop flow)
 - Polarization and Polarization analysis...
- INCREASINGLY multiples of these.

The past decade has seen a rapid move towards ever more complex systems using ever more complex "environments"

Sample Environment: Don't Forget the Basics

In the quest for ever more sophisticated environments one can easily lose sight of the basics.

Keep backgrounds low

• Hard Matte

NIST Center for

leutron Research

- Soft Matter
 Multiposition
 Temp control (-10 to 200)
 - Mag Field (several Gauss to ~10 Tesl
 - Low Temp (2K can do a lot)

Am I SURE it is the temp I say it is? How do I know
Trust but verify!!!
Accuracy – if I set temp to x.yy is the sample a x.
Speed – WHEN is it at x.yy?

Acquiring new multizone changer

Sample Environment: Infinite variety – how to choose

 Must be driven by an actual scientific program NOT a hypothetical one.

- Internal program
- collaboration with "local" power user
- Approved experiments need team with a variety of skills and/or collaborate with long distance power users.

Examples of different user interactions

NUST Center for Neutron Research

Sample Environment: Some Current NIST Directions *Pressure – driver: I.S. program + nSOFT*

Syringe pump driven

NIST Center for Neutron Research

Control software

- Compatible with :
 - aqueous and organic liquids
 - corrosive solutions
 - heated fluid
 - liquefied gases
 - viscous fluids or colloids
 - flammable and explosive gases
- Temperature 0 to 60C at present Higher temp being developed
- Pressure to 690 bar

Sample Environment: Some Current NIST Directions *Pressure – driver: I.S. program + nSOFT*

Sample Environment: Some Current NIST Directions *Pressure – driver: I.S. program + nSOFT*

NGT Center for Neutron Research

Pressure at Low temperature

Sample Environment: Some Current NIST Directions Flow: new rehometer - driver: long standing partnership

NGT Center for

New Ares G2 strain controlled Rheometer will add dielectric spectroscopy

Good for shear banding, conducting polymer solutions, flow batteries

Sample Environment: Some Current NIST Directions Flow: Dielectric Rheosans – driver: flow battery partnership

Sample Environment: Some Current NIST Directions *Flow elongatinal – driver: I.S. program + nSOFT*

- Temperature control ~10°C to 80°C
 - Multiple inlet and outlet ports
 - Interchangeable flow channel geometries
 - Optional pressure sensors at outlets and inlets
 - Continuous unidirectional flow with syringe pumps
- Start-Stop flow with event mode trigger

Sample Environment: Some Current NIST Directions *Flow extensional – driver: I.S. program + nSOFT*

Sample Environment: Some Current NIST Directions *Flow: The Next Generation – driver: I.S. programs + nSOFT*

New IMS to look at high shear in constrained geometries under varying conditions of pressure and temperature

Microfluidics, porous materials, GISANS

Sample Environment: Some Current NIST Directions Flow: The Next Generation – driver: I.S. programs + nSOFT

	Channel Thickness	Maximum Tested Shear Rate	Flow Rate Required
for arch	100 µm	1.49 x 10 ⁶ s ⁻¹	19.9 mL/min
	10 µm	1.50 x 10 ⁶ s ⁻¹	0.2 mL/min

NIST Center Neutron Resea

Competing interests and philosophies:

- Native to the acquisition software
 - drivers added by request by experts usually DAQ Team
- Driven independently of acquisition Software
 - Simple Ready, Acknowledge (and trigger?)
- Simple interface from acquisition software

 Some kind of API
 - but simple (e.g. transfer of commands to an RS-232)?
 - or more complex (interfacing with Labview or C programs?

Question: do we want to enable experiments? Or only measurements? There are NOT the same – can I quickly add a new SE or a new feature to my SE on Sunday afternoon or at 3:00 in the morning?

Energetics of passage formation

Topological relaxation time $T_R = T_C \exp[-E_F/k_BT]$

S. T. Milner, M.E. Cates and D. Roux, J. Phys. (Paris) 51, 2629 (1990)

Determination of T_R - t-SANS

t-SANS Shear-induced L_{α} *to equilibrium* L_{3} *relaxation* ϕ =5vol% CPCI-hexanol in 40vol% dextrose-brine (η_{s} =16.3cP)

Shear aligned at

$$\dot{\gamma}\eta_s/\phi^3 \sim 3 \times 10^8 cP/s$$

center L_a signal plateau

When Couette cell is stopped L₃ signal (passages) re-established

au_{R} and au_{c} versus membrane volume fraction ϕ

Constant membrane composition, i.e. properties Dilution series: $d_3 \phi \approx const$, $d_\alpha \phi \approx const$

 au_R and au_C scale as ϕ^{-3} (as you might expect per shear response) Constant Arrhenius relationship (<u>despite</u> ~3X scaling)

NST Center for $T_R = T_C \exp[-E_F/k_B T] \Rightarrow E_F = 6.7k_B T$ (170 meV)

$au_{\scriptscriptstyle R}$ and $au_{\scriptscriptstyle C}$ versus membrane composition h

Change membrane composition, i.e. properties across L_3 phase region for constant ϕ

Increasing hexanol to CPCI mass ratio **h** ⇒ Increasing Gaussian curvature modulus of membranes ⇒ <u>Decreasing</u> energy cost of passages (and stalk structures)

4% increase in $h E_F = 10.3k_BT$ (260 meV) down to 5.8 k_BT (150 meV)

L. Porcar, W. A. Hamilton, P.D. Butler, and G.G. Warr, *Physical Review Letters*, **93**, 198301 (2004)

NGT Center for Neutron Research

Sample Environment: What does the data mean? *Data Reduction*

10

tangential

Corrected tangential

radial

Sample Environment: What does the data mean? *Data Reduction*

Example: NSSANS (NOT GISANS)

NGT Center for Neutron Research 20mM 70/30 CTA 3,5CI/Br Wormlike micelles

<u>Phys. Rev. Let.</u> 72, 2219 (1994) <u>J. Phys. Chem.</u> 100, 442-445 (1996) <u>Faraday Discussion</u> 104, 65 (1997) <u>Phys. Rev. E</u> 60., R1146 (1999)

Sample Environment Conclusions *Current directions*

- Multizone temp holders
- FLOW
 - 1,3 and 2,3 RheoSANS ... and 1,2 next
 - Extensional flow
 - Rheomicrofludics (pressure driven flow 10^6/200 atm/ 200C
 - GI-FlowSANS
 - Dielectric RheoSANS
- Pressure particularly for gas loading but also upgrade 3kbar
- Displex for soft matter "standard liquid cell holder 2 pos"
- Vapor sorption/flow = nSOFT
- Humidity? Elec field, oscillating magnetic field and pressure

Sample Environment Conclusions *Guiding Principles*

- Get the basics RIGHT And stay vigilant.
- Always develop new capabilities around strong "local" scientific programs.
- Make sure our acquisition system remains flexible enough for experiments as well as measurements.
- Need for flexible reduction software.
- Have a team capable of modifying exiting capabilities for one off user needs.
- ALWAYS be opportunistic!
- KISS and don't be shy

Sample Environment

QUESTIONS? DISCUSSION?

Sample Environment: in the beginning was the beam

Just put in beam and measure

NST Center for Neutron Research

Then came:

- Minimize air path
- Temperature
- Mag field
- Shear
- Pressure

