M. Pancaldi, M. Fanciulli, A.-E. Stanciu, M. Guer, P. Carrara, C. Spezzani, E. Pedersoli, M. Luttmann, M. Vimal, D. Bresteau, D. De Angelis, P. R. Ribic, B. Rösner, C. David, M. Manfredda, F. Guzzi, C. B. Bevis, J. Barolak, S. Bonetti, I. Bykova, L. Novinec, A. Ravindran, A. Simoncig, D. E. Adams, G. Kourousias, G. Mancini, P. Vavassori, R. Sousa, I.-L. Prejbeanu, L. Vila, L. Buda-Prejbeanu,...
Fluctuations and stochastic processes are ubiquitous in nanometer-scale systems, especially in the presence of disorder. Real-space access to fluctuating states is impeded by a fundamental dilemma between spatial and temporal resolution. Averaging over an extended period of time (or repetitions) is key for the majority of high-resolution imaging experiments, especially in weak contrast...
Arrays of nanoscaled magnetic elements, each acting as a single mesospin, are the building blocks of artificial systems of varying complexity in which the mesospin and lattice geometry can be used to design emergent mesoscale magnetic order. The geometry of the mesospin lattice determines the magnetic dimensionality and the interactions between the elements affect the global ordering and...
The development of advanced functional materials relies on understanding interactions and heterogeneity at nanometer-to-micrometer length scales. The extraordinary electromechanical properties of relaxor ferroelectrics are widely attributed to the crucial role of spatial structural heterogeneity. Recent developments in coherent x-ray sources and methods significantly advance the possibilities...