Speckle-based X-ray imaging (SBXI) [1, 2] is a technique that utilises random speckle modulations imprinted into an X-ray wavefront to retrieve multimodal sample information. Here, the term “multimodal” is used in the sense that SBXI can recover information regarding a sample’s X-ray attenuation, refraction, and diffusion information – three complementary signals. Requiring only a piece of...
X-ray ptychography stands out as a robust phase-retrieval coherent imaging technique, well-suited for investigating samples with diverse scale structures. However, its scanning nature necessitates a delicate balance between achieving high resolution and accommodating a large field-of-view (FOV), considering factors such as scanning time, stage travel range, etc. Typically, the FOV and...
Incoherent diffractive imaging (IDI) is a novel imaging technique which uses the transient coherence of X-ray fluorescence to image the structure of the emitting atoms to nanometer resolution. By employing second-order spatial intensity correlations akin to Hanbury Brown and Twiss's stellar intensity interferometry, IDI retrieves the spatial distribution of the underlying emitters,...
Knowledge of the structure of materials and biological samples at nanometer scales and over large volumes is essential to understand the mechanics behind their function. Coherent x-ray imaging is being developed to address this need. Far-field diffraction methods suffer from noise sensitivity and high dynamic range requirement of detector. Recently, with the rapid development of x-ray focusing...